
Chapter 5
Learning spatio-temporal behavioural sequences

Abstract Living beings are able to adapt their behaviour repertoire to environmen-
tal constraints. Among the capabilities needed for such improvement, the ability to
store and retrieve temporal sequences is of particular importance. This chapter fo-
cuses on the description of an architecture based on spikingneurons, able to learn
and autonomously generate a sequence of generic objects or events. The neural ar-
chitecture is inspired by the insect mushroom bodies already taken into account in
the previous chapters as a crucial centre for multimodal sensory integration and be-
haviour modulation in insects. Sequence learning is only one among a variety of
functionalities that coexist within the insect brain computational model. We will
propose a series of implementations that can be adopted to obtain these objectives
and report the simulation results obtained. We will embed these mechanisms also in
roving robots thereby proposing forward-thinking experiments.

5.1 Introduction

Animal brains can be studied by modelling relevant neural structures on the basis of
behavioural experiments. This research continuously improves our knowledge about
learning mechanisms. The developed architectures have been deeply investigated in
the last decades both to understand the sources of the impressive animal capabilities
and to design autonomous systems and control strategies able to reach improved
levels of autonomy in robot acting in non-structured environments.

A deep analysis of the sequence learning processes existingin living beings is
a hard task, however insects can represent an interesting starting point. In fact, in
insects, neurobiological evidence is provided for processes that are related to spatio-
temporal pattern formation and also learning mechanisms that can be used to solve
complex tasks including also sequence learning.

As deeply discussed in chapter 1, there are different types of olfactory receptor
neurons found inDrosophila melanogaster, whose collective dynamics contributes
to the encoding of the features (e.g. odorant components) ofthe source providing
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the stimuli. The antennal lobes (ALs) are the first neuropil in the olfactory path; they
consist of glomeruli linked to olfactory receptor neurons coming from the antennal
receptors. Information is passed on to projection neurons (PNs), which project to
protocerebral areas. [42]. The connection with the large number of MB cells allows
a boost in dimensionality useful to improve the representation space [46, 12]. At
the same time PNs are connected to the lateral horn (LH). In locusts LH inhibits,
after a delay, the activity of the Kenyon cells (KCs) neurons[13]. Therefore the
KCs receive a sequence of excitatory and inhibitory waves from the PNs and LH,
respectively and are believed to communicate with one-another through axo-axonal
synapses [17]. In this chapter as well as in the previous one,we modelled the KC
layer as a dynamic spatio-temporal pattern generator extracting the relevant dynam-
ics needed to perform a behavioural task by training multiple read-out maps.

To understand neural circuits in insect brains, several approaches can be taken
into account and merged: both behavioural and neurophysiologicalexperiments, and
the realization of computational models at different levels of complexity. Several
different examples of MB models were recently proposed and are available in the
literature. One of the first MB models developed for olfactory associative learning
was introduced by [15]. This model is focused on analysing olfactory conditioning
and the effect of positive and negative reinforcement signals. On the basis of the
experimental biological evidences, other ideas were exploited to design biologically
plausible models of the MBs’ neural activity and behavioural functionalities [41].

The self-organization properties available in the MBs are fundamental when the
sequence learning problem is considered. An interesting analysis of this aspect was
presented in [33], where a model based on spiking neurons andsynaptic plasticity,
distributed through different interacting layers was proposed. In their studies the
MBs are assumed to be multi-modal integration centres involving both olfactory
and visual inputs. As strongly supported in our model, theirsystem capabilities are
independent of the type of information processed in the MBs.

Other works investigated the interaction of MBs and ALs in non-elemental learn-
ing processes [49]. Different levels of learning includingreinforcement mechanisms
were adopted at the level of the KCs with the aim to develop a non-elemental learn-
ing strategy. Our proposed architecture considers learning at the KC layer and also
plasticity at the level of the AL as suggested by [38] where filtering mechanisms
were applied to reduce noise and reconstruct missing features at the beginning of
the neural process.

The role of time is also important as emphasised in the locustolfactory process-
ing [48]. To encode complex natural stimuli such as odours weneed to consider the
precise timing of the neural activity. All these aspects were considered in our model,
where the olfactory system and neural circuits are modelledusing dynamical sys-
tems able to generate different neural activities that can be associated to a series of
behaviours. The time evolution is mapped into a space-distributed dynamic which
can be adapted to generate a multitude of concurrent behaviours, among which are
sequence learning and retrieval.



5.1 Introduction 49

The problem of modelling biological nervous system functions by neural dynam-
ics was actively investigated [1, 2]. Different kinds of spiking-based networks were
taken into account for the development of the proposed architecture [4, 23].

The designed model was developed in different stages that allowed to continu-
ously improve the functionalities included. In the first neural structure that will be
presented, the KCs dynamics converges onto a cluster of activity directly related to
the input [3, 5]. The network topology, chosen to obtain thisbehaviour, is inspired by
the winner-takes-all solution: it includes in the lattice local excitatory and global in-
hibitory connections. Successively, a second approach will be also discussed where
we decided to model the KCs’ activity as a Liquid State Network (LSN), a lattice
of connected spiking neurons similar to a Liquid State Machine [28], that contains
mainly local synaptic connections (as in a Cellular Nonlinear Network structure
[7, 3] already used for locomotion control [8]), resemblingaxo-axonal communica-
tion among the KCs [17]. This lattice modulates sensory information, creating a dy-
namic map, which can be exploited concurrently both for classification and for mo-
tor learning purposes. Taking into account the results obtained in other works [21],
the classification task was developed using the sparse dynamics generated within
the KC lattice of neurons implemented using a LSN, where an equilibrium in the
firing rate is not requested and the neural activity can continuously change in time.
In this scenario, multiple read-out maps can exploit this far-from-equilibrium neural
activity (as proposed in [36]) to extract the suitable dynamics needed to solve the
on-going task.

In the literature there are different MB-inspired models for classification with
structures mainly based on several lattices of spiking neurons [32, 40]. In the here
presented model we included a new layer, named context layer, needed to develop
sequence learning capabilities into the architecture.

To summarize the main capabilities of the developed system,the relevant be-
haviours that can arise from this unique model are reported in Table 5.1.

Behaviours Neural Structures involved Plasticity

Attention Antennal Lobe (AL) (1) STDP fromα-β -lobes to AL
α-β -lobes (2) Memory effect in theα-β -lobes

Delayed match-to-sample Antennal Lobe (AL) (1) STDP fromα-β -lobes to AL
α-β -lobes (2) Feedback synapses fromα-β -lobes

α ’-β ’-lobes to α ’-β ’-lobes lobes and vice-versa
Sameness Neuron (3) Activity Detection by the Sameness Neuron

Expectation Antennal Lobe (AL) (1) STDP between one feature to
α-β -lobes other features within the AL

Context layer (2) STDP Fromα-β -lobes to AL
(3) STDP from Contex Layer toα-β -lobes

Sequence Learning Antennal Lobe (AL) (1) STDP Fromα-β -lobes to AL
α-β -lobes (2) STDP from Contex Layer toα-β -lobes

Contex Layer (3) STDP from Contex Layer to Output Layer
Output Layer (4) STDP fromα-β -lobes to Output Layer

Motor Learning Central complex (CX) (1) Gating function between CX and MBs
Intrinsic and extrinsic KC (2) Read-out maps learning

Output Layer

Table 5.1 Different behaviours that can be obtained using the proposed architecture. For each
behaviour the involved neural structures together with therelevant learning aspects are reported.

Going deeper into details, starting from the basic capabilities of the system, the
persistence/distraction mechanisms can be presented. Wild-type insects can follow
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a target and thereby avoid fickle behaviour that can arise when distracters are intro-
duced in the scene. Flies with inactivated MBs loose this capability as demonstrated
in different experiments withDrosophila melanogaster: the attention is continu-
ously switched from the target of interest and the distracter with a considerable
worsening in terms of time and energy spent in the process. Inthe proposed model
this attentional capability is performed using feedback connections which produce
a memory effect at the level of the KCs in theα-β -lobes. When, in analogy to the
MB defective flies, such links are suppressed, the loss of attention is obtained.

Another important capability available in the proposed model is a solution for
the delayed match-to-sample task. As illustrated in details in [11], the introduction
of the α ′-β ′-lobes in the architecture allows to identify the presence of two suc-
cessive presentations of the same element through the detection of an increment in
frequency in theα-β -lobes’ activity. The acquired information can be also usedto
elicit, after conditioning, a specific behaviour that can betriggered by a matching
detection.

The potentialities of the developed MB-inspired architecture are increased with
the introduction of a layer that could be related to theγ-lobe, here called Context
layer. This neural structure is used to store information about the sequence of events
previously acquired by the system. This capability is relevant for evaluating the neu-
rally encoded causality between consecutively presented objects; expectations on
the successive presentation can emerge from this structure[3]. The presence of con-
text layer improves the expectation performance that can beextended from one-step
predictions to reproduce sequences of objects, solving also potential ambiguities,
exploiting the context that is behind each object.

5.2 Model structure

A first scheme of the proposed architecture is reported in Fig. 5.1. The connections’
shape and the weight distribution allow the network to create clusters of activities
as shown in Fig. 5.2 where the formation of a cluster of neuralactivity in theα−β -
lobe neurons is shown in different time windows.

5.2.1 Antennal lobe model

Inspired by the insects’ ALs, the input layer is able to codify either the odour com-
ponents (i.e. odorants) or, in a more general scenario, the extractedfeaturesof pre-
sented objects. In the insect ALs each glomerulus receives input from just one type
of olfactory receptor; in our model each neuron in the input layer encodes a partic-
ular feature related to the object of interest. The AL model contains several neu-
rons organized in groups used to codify a type of feature. Thepool of neurons
in each group codifies different intensity of the corresponding feature. Within the
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Fig. 5.1 Scheme of a basic computational model of the MB-inspired network. The input layer
is randomly connected with theα − β andα ′ − β ′ lobes that are themselves interconnected by
synapses subject to learning. The conditioning layer is finally needed to exploit the information
embedded in the lobes, through reward-based learning processes.

(a) (b)

Fig. 5.2 Cluster formation in theα−β -lobes. The mean value of the neuron membrane potential
is reported for a time window at the beginning of the simulation (a) and at the end when a cluster
of activity is established (b).

same group, neurons are linked together through inhibitorysynapses to guarantee
that only one neuron in each group remains excited (i.e. winner-takes-all solution).
Neurons in different groups are connected using plastic synapses that are reinforced
when neurons are firing together, according to the STDP mechanism introduced in
chapter 2.

In the model, each neuron in the AL layer has a probability P = 25% of being
connected to the KCs. The choice of the sparse connection between the first and the
second layer is directly related to the known topology in thebiological counterpart
[36]. Probability in flies is an average of 4 out of 150 projection neurons per KC.
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5.2.2 Initial model of the MB lobes

The KCs in the MBs, as outlined in chapter 1, project through the peduncle into
the lobes. The lobes possess roughly the same topology, but are involved in differ-
ent functionalities. Our first architecture was restrictedto model the structure and
functions of theα − /β−lobes, and theα ′ − /β ′−lobes, divided into two distinct
neural networks. Each network is able to produce a peculiar dynamics: if excited,
the neurons in the AL layer begin a competition that leads to the emergence of one
cluster of active neurons.

Each lobe was modelled using a lattice of Izhikevich class I neurons with a
toroidal topology. The neurons in this layer are all connected to each other according
to the paradigm of local excitation and global inhibition.

The lobes are connected to each other through two sets of synapses, one from the
α− /β−lobes to theα ′ − /β ′−lobes and vice-versa.

We can assume, on the basis of the biological evidences, thatinformation that
reaches theα ′ − /β ′− lobes is retained there and stored for memory purposes. In
particular we hypothesize that the signals coming from the ALs through the calices
are delayed while reaching in theα ′ − /β ′−lobes.

Under these conditions, the winning cluster in theα − /β−lobes represents the
input presented to the ALs at the actual step, whereas the winning cluster in the
α ′ − /β ′−lobe represents the input presented to the ALs at the previous time step.
The synapses between the lobe systems are reinforced when there are two clusters
simultaneously active in different lobes. This structure is able to detect whether the
object presented as input is the same for two different subsequent acquisitions. In
fact, under these conditions, the plastic synapses betweenthe lobes create a positive
loop between the clusters in the two lobe systems: as a consequence the spiking
rate of the active neurons is increased. We will assume the presence of a neuron
sensitive to the firing activity of theα − /β−lobes network. The sequence of the
network evolution is reported in Fig. 5.3. In the first step, two subsequent presenta-
tions of the same object generate a positive loop between thetwo lobe systems that
correspond to an increment of spiking rate, whereas during the following presenta-
tion, a different object is recognized destroying the loop generated and loosing the
boosting in the spiking activity within the lobes. In the developed model, the mean
spiking activity of theα − /β−lobes is encoded in a neuron used to discriminate
the matching/no-matching events. It is possible to find a threshold in the neural ac-
tivity of the α−/β−lobes in order to distinguish the activity in the case of loopand
no-loop connection as illustrated in Fig. 5.4.

5.2.3 Premotor area

Biological evidences discussed in chapter 1, revealed thatcontext generalisation, vi-
sual attention, adaptive termination and decision making are behaviours that involve
MBs [27, 44]. Furthermore, MBs have also a role in the controlof motor activity.
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Fig. 5.3 Network evolution due to the presentation of a series of objects. When the first object is
presented, its features are processed and a cluster of neural activity arises in the lattice. During
the presentation of a second object theα − /β−lobes behave in a similar way whereas theα ′ −
/β ′−lobes are exited by the lobe-to-lobe connections. If a loop arises, a significant increment in
the spiking rate is obtained allowing the matching/no-matching discrimination. This figure was
reprinted from [11], Copyright (2013), with permission from Elsevier.
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Fig. 5.4 Statistical distribution elaborated using over 500 simulations of the mean spiking activity
of theα − /β−lobes after the reinforcement of the feedback connections between lobes. When a
loop is established, the spiking rate is significantly increased and a threshold atf = 1632Hzcan be
adopted to distinguish the matching/no-matching of two consecutive presented objects with a pro-
cessing error of about 3%. This figure was reprinted from [11], Copyright (2013), with permission
from Elsevier.

For example, initial motor activity in MB-ablated flies is high, whereas long-term
acquisitions show a considerable reduction in motor activity [29].

In the developed architecture the activity of the KCs in the MB-lobes is extracted
to determine the system behaviour, realizing a connection with the premotor area
devoted to the robot control. The MBs and the premotor area are connected via an
associative structure that uses the STDP paradigm (see chapter 2 for details) for a
positive/negative-based reinforcement learning.
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Fig. 5.5 Block scheme of the MB-inspired computational model with the inclusion of the context
layer where the history of the sequence is stored using a mechanism similar to path integration.
STDP synapses link the active context elements with the nextcluster in theα −β -lobes and the
end neuron is used to identify the end of a sequence.

5.2.4 Context layer

Expectation is the capability of a system to predict the nextelement on the basis of
the last presented one. This one step memory could not be enough to discriminate
complex sequences: a memory layer, here called context layer was considered to
extend the system capabilities. Experimental results using real data demonstrate that
the use of context has three useful consequences: (a) it prevents conflicts during
the learning of multiple overlapping sequences, (b) it allows the reconstruction of
missing elements in presence of noisy patterns, and (c) it provides a structure for the
selective exploration of the learned sequences during the recall phase [14].

A first attempt to develop a Context layer was inspired by the path integration
models using the principles of a virtual vectorial sum of thespatial position of the
previously emerged clusters creating a spatio-temporal map of contexts. The pro-
posed structure contains a pool of independent neurons spatially distributed in a
lattice as illustrated in Fig. 5.5. The horizontal axis indicates the time evolution
whereas the vertical axis represents the internal states sequence, forming the con-
text at each time step. The links between the context layer and theα−β -lobes are
obtained through STDP synapses that realize an all-to-all connections between the
two substructures.

Another important element introduced in the architecture is the End Neuron
(EndN in Fig. 5.5) used to introduce the information about the length of the se-
quence during the learning phase. Each context neuron can beconnected to the end
neuron and through STDP can correlate its activation with the end of the sequence.
During the testing phase the context activity is reset when the end neuron emits
spikes.
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The dynamics generated in the context layer resembles the activity produced dur-
ing a reaction-diffusion process. The idea is to consider the α −β -lobes randomly
connected to the context layer that is composed of groups of neurons topologically
organized in lines. This adopted topology resembles the linewise arrangement of the
MB fibres and recalls the granule cells in the cerebellum thatare responsible for en-
coding both the pattern of activations and also the time variables involved that will
be used by the Kenyon cell to generate the suitable output activity [16].

The process involving the context formation starts when thepresented input gen-
erates a winning cluster in theα − β -lobes (timet0) and consequently the lobes
randomly excite the context layer. In this time window, onlythe first column of con-
text neurons is receptive and a winner-takes-all strategy allows the emergence of a
single winning neuron as representative for the current state. After a resetting trig-
gered by the lateral horn, a newly presented element (at timet1) generates a second
cluster in the lobes that randomly excites again the contextlayer. The previous win-
ner in the context starts a diffusion process with a Gaussianshape toward the second
column of neurons. The interactions between these two mechanisms are at the basis
of the selection of a second neuron that is related to the history of the previously
presented elements. All the neurons in the context are massively connected with the
α−β -lobes by synapses subject to the STDP learning. Therefore the synapses con-
necting the active neuron that generates the diffusion process, and the current winner
in the α −β -lobes are reinforced. Multiple presentations of the same sequence of
elements guarantee that the synapses between the context layer and theα−β -lobes
are strong enough to allow the reconstruction of a learned sequence during the recall
phase.

Finally, either rewarding or punishing signals can be linked to the last element of
a sequence and this information can determine the selectionof the most rewarding
sequence to be considered when different possibilities areprovided to the system.

5.3 MB-inspired architecture: a step ahead

The previously described architecture is not able to address additional functional-
ities recently ascribed to the MBs, like motor learning where the time evolution
of reference signals needs to be acquired and reproduced [3]. Therefore the neural
structure of some key layers of the previously discussed MB model were improved,
developing an architecture able to both classify static features and learn time depen-
dent signals used as references for the motor system.

The new functionalities taken into consideration need a different processing layer
to correctly learn and reproduce spatio-temporal dynamics. We decided to model
the KCs’ activity as a Liquid State Network (LSN), a lattice of connected spiking
neurons similar to a Liquid State Machine [28], that contains mainly local synaptic
connections (as in a Cellular Nonlinear Network structure [7, 3] already used for lo-
comotion control [8]), resembling axo-axonal communication among the KCs [17].
The developed lattice elaborates the sensory information,creating a dynamic map,
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which can be exploited concurrently both for classificationand for motor-learning
purposes.

From the classification point of view, our architecture exploits the complex inter-
nal dynamics that is extracted and condensed in periodic signals whose frequency
is able to stimulate specific resonant neurons. We introduced an unsupervised grow-
ing mechanism that guarantees the formation of new classes when needed and a
supervised learning method to train the read-out maps.

The idea is to consider the context layer as a pool of neurons topologically orga-
nized in concentric circles. In bees there is biological evidence that indicates the
presence of this kind of arrangement: the calyx neuropil is concentrically orga-
nized [43]. Moreover, patterns of genetic expression in DM revealed that KC axons
projecting into theγ-lobe form the circumference of the peduncle, whereas a quartet
of axon bundles form the core of the peduncle and project intotheα- andβ -lobes
[19]: a concentric axon bundle is part of the fly MBs.

In our model we hypothesize that each ring is stimulated whenan input is pre-
sented and we assume that the neural activity-wave propagates from the inner to
the outer ring in time following a diffusion-like process. The context neurons are
connected to the resonant neurons where a competition with the current input in-
formation is performed to produce the output of the network through non-elemental
learning processes [24, 49] that are an important building block for the expectation
and sequence learning processes.

The important role of resonant neurons in classification of auditory stimuli was
already discussed in a series of works related to other insect species like crickets [47,
37, 6] and also for the classification of mechanical data provided by a bio-inspired
antenna system [35]. The proposed architecture permits to introduce also motor
learning capabilities within the MB computational model [3]. Therefore we can
both classify static features and learn time-dependent signals to be used to modulate
the motor activity.

5.3.1 Network behaviour for classification

With regards to classification, each class is represented bya resonant neuron real-
ized through a Morris-Lecar model [31]. A training procedure, using the method
introduced in chapter 2, allows associating a different resonant neuron with each
individual input. The read-out map is trained in a supervised way: a periodic wave
has been chosen as target signal with a frequency able to stimulate the correspond-
ing resonant neuron. The first read-out map is trained to generate a sine-wave with
a frequency of 62.5Hz when the first input signal is provided. When resonant neu-
rons are not excited by the input, a new resonant neuron with adifferent frequency
is allocated and the corresponding read-out map is learned.The frequency range
here adopted spreads from 50Hz to 250Hz. This interval was chosen to allow the
coexistence of about five different classes. Lower frequencies cannot be considered
because at least five periods are used to have a reliable number of spikes in the
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Fig. 5.6 Block scheme of the developed architecture. The external input is processed by the an-
tennal lobes that randomly excite the liquid network; the lateral horn inhibits the lattice activity
after a given time window (i.e. 80-100ms). The liquid activity is modulated with multiple read-out
maps that are learned in order to excite specific resonant neurons. The active class neuron (i.e. a
resonant Morris-Lecar neuron) stimulates the context layer creating a trace of activities that can
successively guide the classification of the next stimulus.Feedback from the context layer to the
resonant neurons is subject to learning. A pool of End sequence neurons is also employed to reset
the context layer activity. The output layer selects the correct behaviour for the system depend-
ing on the winning class and can influence the dynamics of the input layer when conditions like
sameness and persistence are identified.

resonators for a robust classification. More classes can be learned if the time win-
dow defined for the target signal is increased accordingly. Moreover, using a wider
frequency spectrum, the time constants used in the LSN should be tuned to gener-
ate the frequencies needed. A minimum number of spikes (larger than 50% of the
maximum allowable depending on the signal frequency) has been considered to de-
termine, whether the resonator is in an active state. The signal coming from the sum
neuron is filtered using a Heaviside function, before entering into the resonator. As
illustrated in Fig. 5.6, the context layer structure is constituted of concentric rings
(only the first three rings were reported for the sake of simplicity). The first ring con-
tains a number of neurons equal to the current number of classes (Nc). In the second
ring, for each neuron of the first ring, there areNc neurons, and the structure devel-
ops like a tree in the successive rings. This implies that, within each ring, there are
Nc

Nr neurons, whereNr is the ring number. The potentially large number of neurons
building-up the context layer is justified, because we are simultaneously learning
both sequences and sub-sequences. This possibility booststhe capabilities of the
structure, much beyond the simple sequence learning. The number of rings present
in the context defines the maximum sequence length. Lateral inhibition among neu-
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rons of the same ring generates a competition, filtering out potential disturbances
[24].

Sequence learning takes place through different stages (i.e. epochs) character-
ized by a neural activity either stimulated by an external input or an internal input,
generated to recall a missing element stored in the network.During each epoch in-
formation propagates one ring ahead, from the inner to the outermost.

In every epoch, the winning neuron in the outermost ring and the winner neu-
ron of the previous ring are subject to an STDP learning process which modulates
their connection weights as introduced in chapter 2. In our model, this process could
cover larger time scales than the standard STDP. This is required to create correla-
tions among consecutive objects, presentation of which does not happen within the
usual STDP time window. Theoretical discussions are presented in [21] whereas
further biological evidences are reported in [45] where these learning processes can
be modelled using memory traces and reverberation mechanisms [20, 25].

5.3.2 End sequence neurons

Each neuron in the context layer is also linked to an end sequence neuron with STDP
synapses. In details, all neurons in each ring are connectedwith the corresponding
end sequence neuron arranged in an end sequence vector with alength equal to
the number of rings in the context. A rewarding signal, at theend of a sequence,
activates the end sequence neuron for the outermost active ring in the context layer.
The synapses connecting this end sequence seuron with the winner neuron in the
outermost ring will be reinforced accordingly. In our modelthe reward signal acts
as a dopaminergic stimulus on the end sequence seuron to reward the sequence
just completed and reset the activity in the context layer for the learning of a new
sequence [25].

5.3.3 Neural models and learning mechanisms

Different neuron models were used in the architecture to generate the suitable dy-
namics needed in the subsystems: the Izhikevich’s spiking neurons and the Morris-
Lecar model (ML) as introduced in Chapter 2. We adopted the Izhikevich Tonic
spiking model in the ALs, context layer and end sequence neurons whereas the
Class I model was exploited in the LSN.

A decay rate has been introduced to consider dynamically changing environ-
ments where the learned sequences could be forgotten if no longer rewarding. De-
tails on applications of this learning paradigm to biorobotics are illustrated in [9].
Spiking neurons in the KC lattice are fully connected to the sum neurons via plas-
tic trainable synapses. A simple supervised learning method based on the pseudo-
inverse algorithm [26] has been adopted and compared with anincremental learning



5.3 MB-inspired architecture: a step ahead 59

rule as illustrated in [30] where the spiking activity of theneurons is transformed
in continuous signals using different functions allowing the evaluation of an er-
ror needed for the learning. Different supervised learningmethods, based on back
propagation for spiking networks [22], have not been adopted due to the presence of
recurrent connections in the lattice. Although different learning approaches could be
taken into consideration [15], we introduced a simple incremental learning strategy
based on the least mean square algorithm, that adapts the synaptic weight using the
computed error and the local activity generated by the pre-synaptic neuron, working
with the synaptic response (i.e. continuous variables) instead of with the spike train.
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Fig. 5.7 Comparison between the results of the read-out map obtainedusing a pseudo-inverse
(solid line) and an incremental (dashed line) learning method. The power spectrum of the signals
(a) and the cumulative output of the sum neuron (b) are reported.

The exit condition for the learning process is obtained monitoring the spikes
emitted by the ML neurons: when a given number of spikes is correctly emitted, the
learning is stopped and the weights of the read-out map are stored in the architec-
ture. To evaluate the performance of the learning process, acomparison between the
pseudo-inverse (standard solution) and the biologically more plausible step-by-step
method was performed for a simple interpolation task. The results, shown in Fig.
5.7, illustrate that using an incremental procedure the learning process converges
on an oscillatory signal able to properly stimulate the corresponding ML neuron;
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in fact, the maximum amount of allowable spikes is emitted. It can be noticed that
even if the output signal of the sum neuron does not exactly match the sinusoidal
target, the classification phase is successfully accomplished.

Fig. 5.8 Activity of the Context layer when the sequenceABC is provided and the sub-sequences
are learned by the system. The red circles represent the active neurons, multiple chains are gener-
ated to trace the subsequencesBCD, CD andD acquired in the Context layer.

5.3.4 Decision-making process

The architecture is able to store and consequently retrievemultiple sequences that
can be followed in a decision-making task. A rewarding signal, provided to the
system at the end of each sequence, is used to evaluate the importance of each
stored sequence. In our model the level of reward associatedwith the generated
sequence is directly related to the number of spikes emittedby the end neuron. As an
example after learning two sequencesABBAandBDDC, the system needs to choose
which sequence to generate in front of the presentation of the first objects of the two
sequences (A andB). This is a typical case of landmark sequence following to reach
a target place. The system internally simulates one and thenthe other sequence
and compares the number of spikes of the end sequence neuron in both cases. In
the reported example the sequenceBDDC is the most rewarding one and then the
behaviours related to this sequence are performed.
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5.3.5 Learning sequences and sub-sequences

The developed architecture, thanks to the Context layer topology, allows to learn
not only a sequence of elements but also the sub-sequences included therein. We
can exploit this capability offered by the model, allowing each presented element to
activate, besides a neuron included in the ring after the last active one, also a neuron
in the first ring of the Context.

This procedure allows to consider each element of a sequenceas a starting point
for a new one. This leads to generation and storage of multiple chains of context
activity: under presence of very noisy and complex conditions this strategy could be
useful to retain only statistically relevant sub-sequences that are reinforced depend-
ing on the presentation frequency that is used to improve thesequence reliability.

An example of learning for sub-sequences is shown in Fig. 5.8, where the evolu-
tion of the context layer is shown, while learning the sequenceABCD. Each element
of the sequence creates a trace in the Context layer that starts from the inner ring
and propagates towards the outer ones. The memory trace in the Context layer is
incrementally strengthened through multiple presentations of the same sequence.

5.4 Robotic experiments

To evaluate the performance of the designed architecture, aseries of experiments
were carried out with a roving platform. The robot is equipped with a PC on board
that communicates with a series of micro-controller-basedboards used for the mo-
tor control. The sensory system consists of two ultrasound sensors used to detect
frontal obstacles and an omnidirectional camera included to identify the presence
of visual targets with specific shapes in the environment (i.e. objects of interest).
A first experiment is directly related to the persistence behaviour as shown in Fig.
5.9 (a). The robot is attracted by the objects shown on the monitors placed in the
arena and is able either to filter out the distracter, replicating the attention capability
present in the wild-type insect, or to switch among the presented objects, like in
the MB-defective case, as reported in Fig. 5.9 (b), where therobot is continuously
distracted by the presentation of the conflictual stimuli.

Honeybees are able to deal with a maze by using symbolic cues [18, 50], and
ants are able to navigate following routes [13], therefore we evaluate our control
architecture on a roving robot facing with scenarios where the available paths from
the entrance to the exit of a maze, have to be acquired and evaluated [51]. The
objective is to identify from the visual input the landmarksof interest and process
the acquired landmark features using a spiking neural network to learn multiple
sequences of events/actions and the corresponding expected rewards.

The information acquired through the visual system is pre-processed using sim-
ple segmentation libraries, and then processed by the network to identify the suitable
action (or more complex behaviours) to be performed. In the proposed experiment,
the robot can perform a turning action followed by a forward motion to reach a new
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Fig. 5.9 (a) Persistence experiment with a roving robot. Trajectoryfollowed by the robot during the
experiment. The images acquired from an on-board fish-eye camera are reported for three different
processing steps. The robot is able to persistently move in the direction of the inverted T also when
a distracter is presented (i.e. the circle). After multiplepresentations, the memory associated with
the inverted T fades out and the robot follows the circle. (b)Distraction experiment with a rover.
The presentation of a new object at step 12 is enough to changethe robot behaviour independently
of the time/energy already invested in following the previous target. This figure was reprinted from
[5], Copyright (2015), with permission from Elsevier.

branch of the maze. Two monitors are used to simulate the presence of landmarks in
each branch of the multiple T-maze. To guide the robot in the maze we considered a
double reversed T to indicate a right turn and a double circlefor a left turn. During
the learning phase, the correct actions to be performed are provided showing only
one landmark each time on the monitor positioned in the correct turning direction
(see Fig. 5.10 (a)). During the testing phase only one monitor is used and the struc-
ture of the maze is modified to demonstrate that the robot is able to solve it using
the knowledge acquired in the previous phase (Fig. 5.10 (b)).

These results show that the robot is able to negotiate a maze by using sym-
bolic cues as shown by honeybees [51]. We then included the sequence learning
capabilities considering a more complex scenario. The robot initially learns two se-
quences of actions to be performed to solve the maze following two different routes
that guarantee, at the end, reward signals with different values. The first sequence
(i.e. Inverted−T, Circle, Inverted−T) is associated to the left, right and then left
maze-branch selection, whereas the second learned sequence (i.e.T, inverted−T)
is associated to a right and then left turning action. The reward level that modu-
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Fig. 5.10 Robotic experiments performed using different maze configurations for the learning
(a) and the testing (b) phase. Both the top and lateral view acquired from the starting point are
reported. The solid line represents the trajectory followed by the robot. The scenario is equivalent
to the biological experiments performed with honeybees [51]. During the learning phase the robot
memorizes the correct actions to be associated with each presented element. During the testing
phase (b) the robot can solve a different maze using the landmark projected on a single monitor.

lates the stimulation of the end sequence neuron, is lower for the first sequence than
for the second one that should be preferred. During the testing phase the robot is
placed in front of two concurrent stimuli (i.e.T and inverted− T) to perform a
decision-making process. In this way the architecture can internally retrieve differ-
ent sequences, depending on the initial stimulus, and selects the most performing
one depending on the spiking activity of the end neuron, thatencodes the cumula-
tive level of rewards obtained, for that sequence, during the learning process. The
control structure internally simulates the outcome of the two possible sequences to
be followed and, on the basis of the expected reward, selectsthe most rewarding one
(Fig. 5.11).

5.5 Conclusions

The ability to understand the environment is a fundamental skill for living beings
and needs to be acquired as a dynamic process. The context in which events occur
cannot be ignored, in fact, sometimes it is more important than the events them-
selves. Starting from the biological evidences concerninginsect capabilities to learn
sequences of events and the known facts on the neural structures responsible for
these processes, in this work a neural-based architecture for sequence representation
and learning is proposed. The proposed model is therefore based on experimental
evidences on insect neurodynamics and on specific hypotheses on the mechanisms
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Fig. 5.11 After learning two sequences, the robot selects the most rewarding one performing a
decision-making process. The learned sequences are depicted on the two sides; the solid line rep-
resents the selected trajectory during the testing phase.

involved in the processing of time-related events. Starting from basic capabilities
like attention, expectation and others, the MB-inspired model was extended to in-
clude sequence learning with the addition of a context layer. A series of implementa-
tions is proposed: simulation and experimental results using a roving robot, demon-
strate the effectiveness of the proposed architecture thatrepresents a key structure
for the development of a complete insect brain computational model. In conclusion,
the model architecture discussed here represents a fundamental building block to-
ward an artificial neural processing structure unifying different functionalities, and
performing different behaviours, that biological counterparts are able to show.
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