Chapter 5
Learning spatio-temporal behavioural sequences

Abstract Living beings are able to adapt their behaviour repertarertvironmen-
tal constraints. Among the capabilities needed for suchravgment, the ability to
store and retrieve temporal sequences is of particularitapoe. This chapter fo-
cuses on the description of an architecture based on spildngpns, able to learn
and autonomously generate a sequence of generic objecterdseThe neural ar-
chitecture is inspired by the insect mushroom bodies ajréaken into account in
the previous chapters as a crucial centre for multimoda@srintegration and be-
haviour modulation in insects. Sequence learning is onky @among a variety of
functionalities that coexist within the insect brain cortgiional model. We will
propose a series of implementations that can be adopteddamdhese objectives
and report the simulation results obtained. We will embedé¢tmechanisms also in
roving robots thereby proposing forward-thinking expesnts.

5.1 Introduction

Animal brains can be studied by modelling relevant neuratstires on the basis of
behavioural experiments. This research continuouslyavgs our knowledge about
learning mechanisms. The developed architectures havedasply investigated in
the last decades both to understand the sources of the ishgrasimal capabilities
and to design autonomous systems and control strategies@béach improved
levels of autonomy in robot acting in non-structured envinents.

A deep analysis of the sequence learning processes existliving beings is
a hard task, however insects can represent an interestirtgtpoint. In fact, in
insects, neurobiological evidence is provided for proes#isat are related to spatio-
temporal pattern formation and also learning mechanisatscéin be used to solve
complex tasks including also sequence learning.

As deeply discussed in chapter 1, there are different typefaxctory receptor
neurons found irosophila melanogastewhose collective dynamics contributes
to the encoding of the features (e.g. odorant component$leo$ource providing
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the stimuli. The antennal lobes (ALS) are the first neuropihe olfactory path; they
consist of glomeruli linked to olfactory receptor neuronsning from the antennal
receptors. Information is passed on to projection neurBis), which project to
protocerebral areas. [42]. The connection with the largalyer of MB cells allows

a boost in dimensionality useful to improve the represénagpace [46, 12]. At
the same time PNs are connected to the lateral horn (LH).dusks LH inhibits,

after a delay, the activity of the Kenyon cells (KCs) neur@t¥]. Therefore the

KCs receive a sequence of excitatory and inhibitory wavesfthe PNs and LH,
respectively and are believed to communicate with onekarahrough axo-axonal
synapses [17]. In this chapter as well as in the previouswaenodelled the KC
layer as a dynamic spatio-temporal pattern generatoraixtggthe relevant dynam-
ics needed to perform a behavioural task by training metiphd-out maps.

To understand neural circuits in insect brains, severatagghes can be taken
into account and merged: both behavioural and neuroplogal experiments, and
the realization of computational models at different level complexity. Several
different examples of MB models were recently proposed archgailable in the
literature. One of the first MB models developed for olfagtassociative learning
was introduced by [15]. This model is focused on analysirfigobbdry conditioning
and the effect of positive and negative reinforcement dggr@n the basis of the
experimental biological evidences, other ideas were égul®o design biologically
plausible models of the MBs’ neural activity and behavidtuactionalities [41].

The self-organization properties available in the MBs aredimental when the
sequence learning problem is considered. An interestiafysis of this aspect was
presented in [33], where a model based on spiking neuronsyaraptic plasticity,
distributed through different interacting layers was megd. In their studies the
MBs are assumed to be multi-modal integration centres winglboth olfactory
and visual inputs. As strongly supported in our model, teggtem capabilities are
independent of the type of information processed in the MBs.

Other works investigated the interaction of MBs and ALs in+gdemental learn-
ing processes [49]. Different levels of learning includiegforcement mechanisms
were adopted at the level of the KCs with the aim to developreeglemental learn-
ing strategy. Our proposed architecture considers legratithe KC layer and also
plasticity at the level of the AL as suggested by [38] whererfihg mechanisms
were applied to reduce noise and reconstruct missing fesfatrthe beginning of
the neural process.

The role of time is also important as emphasised in the laalesttory process-
ing [48]. To encode complex natural stimuli such as odours@ed to consider the
precise timing of the neural activity. All these aspectsenansidered in our model,
where the olfactory system and neural circuits are modeitédg dynamical sys-
tems able to generate different neural activities that @adsociated to a series of
behaviours. The time evolution is mapped into a spacetlisad dynamic which
can be adapted to generate a multitude of concurrent balraymmong which are
sequence learning and retrieval.
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The problem of modelling biological nervous system funasiby neural dynam-
ics was actively investigated [1, 2]. Different kinds ofldpg-based networks were
taken into account for the development of the proposed t&atoire [4, 23].

The designed model was developed in different stages tlusted to continu-
ously improve the functionalities included. In the first redwstructure that will be
presented, the KCs dynamics converges onto a cluster oftadtirectly related to
the input[3, 5]. The network topology, chosen to obtain bBekaviour, is inspired by
the winner-takes-all solution: it includes in the lattioe#l excitatory and global in-
hibitory connections. Successively, a second approadhevélso discussed where
we decided to model the KCs’ activity as a Liquid State Netw@SN), a lattice
of connected spiking neurons similar to a Liquid State MaeHR8], that contains
mainly local synaptic connections (as in a Cellular Nordindletwork structure
[7, 3] already used for locomotion control [8]), resemblag-axonal communica-
tion among the KCs [17]. This lattice modulates sensoryrimition, creating a dy-
namic map, which can be exploited concurrently both forsifecmtion and for mo-
tor learning purposes. Taking into account the resultsinbtein other works [21],
the classification task was developed using the sparse dgs@anerated within
the KC lattice of neurons implemented using a LSN, where aiilibgum in the
firing rate is not requested and the neural activity can oootiisly change in time.
In this scenario, multiple read-out maps can exploit thisifam-equilibrium neural
activity (as proposed in [36]) to extract the suitable dyi@meeded to solve the
on-going task.

In the literature there are different MB-inspired models dtassification with
structures mainly based on several lattices of spikingor@if32, 40]. In the here
presented model we included a new layer, named context lageded to develop
sequence learning capabilities into the architecture.

To summarize the main capabilities of the developed systeenrelevant be-
haviours that can arise from this unique model are reporntd@dble 5.1.

[ Behaviours [Neural Structures involved] Plasticity ]
Attention Antennal Lobe (AL) (1) STDP froma-B-lobes to AL
a-B-lobes (2) Memory effect in thex-B-lobes
Delayed match-to-sample ~ Antennal Lobe (AL) (1) STDP froma-B-lobes to AL
a-B-lobes (2) Feedback synapses framp-lobes
o’-B-lobes to o’- B-lobes lobes and vice-versa
Sameness Neuron | (3) Activity Detection by the Sameness Neufon
Expectation Antennal Lobe (AL) (1) STDP between one feature to
a-B-lobes other features within the AL
Context layer (2) STDP Froma-B-lobes to AL
(3) STDP from Contex Layer ta-S-lobes
Sequence Learning Antennal Lobe (AL) (1) STDP Froma-B-lobes to AL
a-B-lobes (2) STDP from Contex Layer ta-B-lobes
Contex Layer (3) STDP from Contex Layer to Output Laygr
Output Layer (4) STDP froma-B-lobes to Output Layer
Motor Learning Central complex (CX) (1) Gating function between CX and MBs
Intrinsic and extrinsic KC (2) Read-out maps learning
Output Layer

Table 5.1 Different behaviours that can be obtained using the prap@sehitecture. For each
behaviour the involved neural structures together withréhevant learning aspects are reported.

Going deeper into details, starting from the basic cap#slof the system, the
persistence/distraction mechanisms can be presentedktyi¢ insects can follow
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a target and thereby avoid fickle behaviour that can arisenwigtracters are intro-
duced in the scene. Flies with inactivated MBs loose thisibdity as demonstrated
in different experiments witlbrosophila melanogasteithe attention is continu-
ously switched from the target of interest and the distraat¢h a considerable
worsening in terms of time and energy spent in the proceshelproposed model
this attentional capability is performed using feedbackreztions which produce
a memory effect at the level of the KCs in thef3-lobes. When, in analogy to the
MB defective flies, such links are suppressed, the loss efttin is obtained.

Another important capability available in the proposed mlad a solution for
the delayed match-to-sample task. As illustrated in detai[11], the introduction
of the a’-B’-lobes in the architecture allows to identify the presenteme suc-
cessive presentations of the same element through thetidate€an increment in
frequency in thex-B-lobes’ activity. The acquired information can be also used
elicit, after conditioning, a specific behaviour that canttiggered by a matching
detection.

The potentialities of the developed MB-inspired architeetare increased with
the introduction of a layer that could be related to thiebe, here called Context
layer. This neural structure is used to store informaticoudthe sequence of events
previously acquired by the system. This capability is refe\for evaluating the neu-
rally encoded causality between consecutively presengetts; expectations on
the successive presentation can emerge from this stry&juiigne presence of con-
text layer improves the expectation performance that caxtended from one-step
predictions to reproduce sequences of objects, solvirg @dsential ambiguities,
exploiting the context that is behind each object.

5.2 Model structure

A first scheme of the proposed architecture is reported ing=ig The connections’
shape and the weight distribution allow the network to eredtisters of activities
as shown in Fig. 5.2 where the formation of a cluster of neactVity in thea — 3-
lobe neurons is shown in different time windows.

5.2.1 Antennal lobe model

Inspired by the insects’ ALs, the input layer is able to cpdiither the odour com-
ponents (i.e. odorants) or, in a more general scenario xtinactedfeaturesof pre-
sented objects. In the insect ALs each glomerulus receiyas from just one type
of olfactory receptor; in our model each neuron in the inpyel encodes a partic-
ular feature related to the object of interest. The AL modwitains several neu-
rons organized in groups used to codify a type of feature. §dw of neurons
in each group codifies different intensity of the correspongdeature. Within the
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Fig. 5.1 Scheme of a basic computational model of the MB-inspireavoet. The input layer

is randomly connected with the — 8 anda’ — B’ lobes that are themselves interconnected by
synapses subject to learning. The conditioning layer idljimeeeded to exploit the information
embedded in the lobes, through reward-based learning ggese

Fig. 5.2 Cluster formation in ther — 3-lobes. The mean value of the neuron membrane potential
is reported for a time window at the beginning of the simalatfa) and at the end when a cluster
of activity is established (b).

same group, neurons are linked together through inhibegnapses to guarantee
that only one neuron in each group remains excited (i.e. evitakes-all solution).
Neurons in different groups are connected using plastiagy®es that are reinforced
when neurons are firing together, according to the STDP nméstmaintroduced in
chapter 2.

In the model, each neuron in the AL layer has a probability F5% 2f being
connected to the KCs. The choice of the sparse connectiaebatthe first and the
second layer is directly related to the known topology intifogical counterpart
[36]. Probability in flies is an average of 4 out of 150 projectneurons per KC.
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5.2.2 Initial model of the MB lobes

The KCs in the MBs, as outlined in chapter 1, project throdghpeduncle into
the lobes. The lobes possess roughly the same topologyrédivalved in differ-
ent functionalities. Our first architecture was restricteanodel the structure and
functions of thea — /B—lobes, and ther' — /B'—lobes, divided into two distinct
neural networks. Each network is able to produce a pecwiaamhics: if excited,
the neurons in the AL layer begin a competition that lead&i¢oetmergence of one
cluster of active neurons.

Each lobe was modelled using a lattice of Izhikevich claseurons with a
toroidal topology. The neurons in this layer are all conedtb each other according
to the paradigm of local excitation and global inhibition.

The lobes are connected to each other through two sets gbsgszone from the
a — /B—lobes to thex’ — /B'—lobes and vice-versa.

We can assume, on the basis of the biological evidencesinfoamation that
reaches ther' — /B/— lobes is retained there and stored for memory purposes. In
particular we hypothesize that the signals coming from the through the calices
are delayed while reaching in tle — /8’ —lobes.

Under these conditions, the winning cluster in the- /3—lobes represents the
input presented to the ALs at the actual step, whereas theingrcluster in the
a — /B/—Iobe represents the input presented to the ALs at the previme step.
The synapses between the lobe systems are reinforced wérenate two clusters
simultaneously active in different lobes. This structwalble to detect whether the
object presented as input is the same for two different sjuss# acquisitions. In
fact, under these conditions, the plastic synapses betthedabes create a positive
loop between the clusters in the two lobe systems: as a coeseq the spiking
rate of the active neurons is increased. We will assume tagepce of a neuron
sensitive to the firing activity of ther — /B—lobes network. The sequence of the
network evolution is reported in Fig. 5.3. In the first stepo subsequent presenta-
tions of the same object generate a positive loop betweetwthobe systems that
correspond to an increment of spiking rate, whereas duhieddllowing presenta-
tion, a different object is recognized destroying the loepeyated and loosing the
boosting in the spiking activity within the lobes. In the é&ped model, the mean
spiking activity of thea — /B —lobes is encoded in a neuron used to discriminate
the matching/no-matching events. It is possible to find eshold in the neural ac-
tivity of the a — /3—lobes in order to distinguish the activity in the case of laop
no-loop connection as illustrated in Fig. 5.4.

5.2.3 Premotor area

Biological evidences discussed in chapter 1, revealedtirgext generalisation, vi-
sual attention, adaptive termination and decision makiadpahaviours that involve
MBs [27, 44]. Furthermore, MBs have also a role in the contfahotor activity.
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Fig. 5.3 Network evolution due to the presentation of a series ofcaibjé/Vhen the first object is
presented, its features are processed and a cluster ofl metivaty arises in the lattice. During
the presentation of a second object the- /3—lobes behave in a similar way whereas the-
/B'—Iobes are exited by the lobe-to-lobe connections. If a ladges, a significant increment in
the spiking rate is obtained allowing the matching/no-rigig discrimination. This figure was
reprinted from [11], Copyright (2013), with permissiontncElsevier.
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Fig. 5.4 Statistical distribution elaborated using over 500 sirtiates of the mean spiking activity
of thea — /B—lobes after the reinforcement of the feedback connectietséen lobes. When a
loop is established, the spiking rate is significantly iased and a threshold &= 1632Hz can be
adopted to distinguish the matching/no-matching of twoseeontive presented objects with a pro-
cessing error of about 3%. This figure was reprinted from,[Cbpyright (2013), with permission
from Elsevier.

For example, initial motor activity in MB-ablated flies isgi, whereas long-term
acquisitions show a considerable reduction in motor &gt[2i9].

In the developed architecture the activity of the KCs in the-Mbes is extracted
to determine the system behaviour, realizing a connectiitm tive premotor area
devoted to the robot control. The MBs and the premotor are@@nnected via an
associative structure that uses the STDP paradigm (se¢ectafor details) for a
positive/negative-based reinforcement learning.
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Fig. 5.5 Block scheme of the MB-inspired computational model wité ithclusion of the context
layer where the history of the sequence is stored using aanéesh similar to path integration.
STDP synapses link the active context elements with the claster in thea — B-lobes and the
end neuron is used to identify the end of a sequence.

5.2.4 Context layer

Expectation is the capability of a system to predict the eéainent on the basis of
the last presented one. This one step memory could not bgkrowiscriminate
complex sequences: a memory layer, here called context Ve considered to
extend the system capabilities. Experimental resultggusial data demonstrate that
the use of context has three useful consequences: (a) iemseeonflicts during
the learning of multiple overlapping sequences, (b) itvadidhe reconstruction of
missing elements in presence of noisy patterns, and (wiges a structure for the
selective exploration of the learned sequences duringettedphase [14].

A first attempt to develop a Context layer was inspired by thth ntegration
models using the principles of a virtual vectorial sum of $ipatial position of the
previously emerged clusters creating a spatio-temporal ofi@ontexts. The pro-
posed structure contains a pool of independent neurong@kpatistributed in a
lattice as illustrated in Fig. 5.5. The horizontal axis tates the time evolution
whereas the vertical axis represents the internal statpeesee, forming the con-
text at each time step. The links between the context layetlaa — 3-lobes are
obtained through STDP synapses that realize an all-tosalhections between the
two substructures.

Another important element introduced in the architectgréhie End Neuron
(EndN in Fig. 5.5) used to introduce the information abowt kbngth of the se-
quence during the learning phase. Each context neuron cesninected to the end
neuron and through STDP can correlate its activation wighethid of the sequence.
During the testing phase the context activity is reset whenend neuron emits
spikes.
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The dynamics generated in the context layer resembles théaproduced dur-
ing a reaction-diffusion process. The idea is to considenth- 3-lobes randomly
connected to the context layer that is composed of groupswioms topologically
organized in lines. This adopted topology resembles tiesvise arrangement of the
MB fibres and recalls the granule cells in the cerebellumahatesponsible for en-
coding both the pattern of activations and also the timealdes involved that will
be used by the Kenyon cell to generate the suitable outpiuits¢i 6].

The process involving the context formation starts wherptiesented input gen-
erates a winning cluster in the — 3-lobes (timetg) and consequently the lobes
randomly excite the context layer. In this time window, offig first column of con-
text neurons is receptive and a winner-takes-all stratigws the emergence of a
single winning neuron as representative for the curremé skfter a resetting trig-
gered by the lateral horn, a newly presented element (attiingeenerates a second
cluster in the lobes that randomly excites again the cotagrt. The previous win-
ner in the context starts a diffusion process with a Gaustiape toward the second
column of neurons. The interactions between these two nmészha are at the basis
of the selection of a second neuron that is related to theryistf the previously
presented elements. All the neurons in the context are wegsionnected with the
o — (B-lobes by synapses subject to the STDP learning. Therdfergyinapses con-
necting the active neuron that generates the diffusiongam@nd the currentwinner
in the o — B-lobes are reinforced. Multiple presentations of the saetgience of
elements guarantee that the synapses between the coyendia thex — 3-lobes
are strong enough to allow the reconstruction of a learngdesece during the recall
phase.

Finally, either rewarding or punishing signals can be lohi@the last element of
a sequence and this information can determine the seleatit®e most rewarding
sequence to be considered when different possibilitieprméded to the system.

5.3 MB-inspired architecture: a step ahead

The previously described architecture is not able to addadslitional functional-
ities recently ascribed to the MBs, like motor learning weh#ite time evolution
of reference signals needs to be acquired and reproduceti{8itefore the neural
structure of some key layers of the previously discussed MBehwere improved,
developing an architecture able to both classify statitufes and learn time depen-
dent signals used as references for the motor system.

The new functionalities taken into consideration needfadiht processing layer
to correctly learn and reproduce spatio-temporal dynanées decided to model
the KCs’ activity as a Liquid State Network (LSN), a latticeamnnected spiking
neurons similar to a Liquid State Machine [28], that corgaimainly local synaptic
connections (as in a Cellular Nonlinear Network structire3] already used for lo-
comotion control [8]), resembling axo-axonal communicatimong the KCs [17].
The developed lattice elaborates the sensory informati@ating a dynamic map,
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which can be exploited concurrently both for classificatéord for motor-learning
purposes.

From the classification point of view, our architecture exslthe complex inter-
nal dynamics that is extracted and condensed in periodi@asgvhose frequency
is able to stimulate specific resonant neurons. We intradianainsupervised grow-
ing mechanism that guarantees the formation of new claskes weeded and a
supervised learning method to train the read-out maps.

The idea is to consider the context layer as a pool of neuapwdgically orga-
nized in concentric circles. In bees there is biologicatiewice that indicates the
presence of this kind of arrangement: the calyx neuropiloiscentrically orga-
nized [43]. Moreover, patterns of genetic expression in @Vvealed that KC axons
projecting into the-lobe form the circumference of the peduncle, whereas aejuar
of axon bundles form the core of the peduncle and projectthea - and3-lobes
[19]: a concentric axon bundle is part of the fly MBs.

In our model we hypothesize that each ring is stimulated varemput is pre-
sented and we assume that the neural activity-wave progafam the inner to
the outer ring in time following a diffusion-like processh& context neurons are
connected to the resonant neurons where a competition hétleudrrent input in-
formation is performed to produce the output of the netwbrltigh non-elemental
learning processes [24, 49] that are an important buildlogkbfor the expectation
and sequence learning processes.

The important role of resonant neurons in classificationuafitary stimuli was
already discussed in a series of works related to othertispecies like crickets [47,
37, 6] and also for the classification of mechanical dataidex/by a bio-inspired
antenna system [35]. The proposed architecture permitattoduce also motor
learning capabilities within the MB computational mode].[Bherefore we can
both classify static features and learn time-dependenatsdo be used to modulate
the motor activity.

5.3.1 Network behaviour for classification

With regards to classification, each class is representedriegonant neuron real-
ized through a Morris-Lecar model [31]. A training proceeluusing the method
introduced in chapter 2, allows associating a differenbmest neuron with each
individual input. The read-out map is trained in a supeisay: a periodic wave
has been chosen as target signal with a frequency able tolaterthe correspond-
ing resonant neuron. The first read-out map is trained torgéma sine-wave with
a frequency of 62.Hz when the first input signal is provided. When resonant neu-
rons are not excited by the input, a new resonant neuron wdiffexent frequency
is allocated and the corresponding read-out map is leafftesl frequency range
here adopted spreads fromH9to 25Hz This interval was chosen to allow the
coexistence of about five different classes. Lower freqigsntannot be considered
because at least five periods are used to have a reliable nwhbpikes in the
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Fig. 5.6 Block scheme of the developed architecture. The exteraitiis processed by the an-
tennal lobes that randomly excite the liquid network; thteral horn inhibits the lattice activity
after a given time window (i.e. 80-100ms). The liquid adtiis modulated with multiple read-out
maps that are learned in order to excite specific resonambnguThe active class neuron (i.e. a
resonant Morris-Lecar neuron) stimulates the contextrlayeating a trace of activities that can
successively guide the classification of the next stimufeedback from the context layer to the
resonant neurons is subject to learning. A pool of End sezpiaaurons is also employed to reset
the context layer activity. The output layer selects theemirbehaviour for the system depend-
ing on the winning class and can influence the dynamics ofrthetilayer when conditions like
sameness and persistence are identified.

resonators for a robust classification. More classes cardradd if the time win-
dow defined for the target signal is increased accordingty:ddver, using a wider
frequency spectrum, the time constants used in the LSN ghmutuned to gener-
ate the frequencies needed. A minimum number of spikesefldhan 50% of the
maximum allowable depending on the signal frequency) has bensidered to de-
termine, whether the resonator is in an active state. Thabka@ming from the sum
neuron is filtered using a Heaviside function, before entgimto the resonator. As
illustrated in Fig. 5.6, the context layer structure is d@ated of concentric rings
(only the first three rings were reported for the sake of sicitg). The first ring con-
tains a number of neurons equal to the current number ofeddsg). In the second
ring, for each neuron of the first ring, there &teneurons, and the structure devel-
ops like a tree in the successive rings. This implies thahiwieach ring, there are
N\ neurons, wherd, is the ring number. The potentially large number of neurons
building-up the context layer is justified, because we amaulaneously learning
both sequences and sub-sequences. This possibility bihestsapabilities of the
structure, much beyond the simple sequence learning. Timauof rings present
in the context defines the maximum sequence length. Laterddition among neu-
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rons of the same ring generates a competition, filtering otergial disturbances
[24].

Sequence learning takes place through different stagesefiochs) character-
ized by a neural activity either stimulated by an externplirnor an internal input,
generated to recall a missing element stored in the netviarkng each epoch in-
formation propagates one ring ahead, from the inner to thermost.

In every epoch, the winning neuron in the outermost ring d@dwinner neu-
ron of the previous ring are subject to an STDP learning m®eeéhich modulates
their connection weights as introduced in chapter 2. In cadleh this process could
cover larger time scales than the standard STDP. This isreztjto create correla-
tions among consecutive objects, presentation of whicls doehappen within the
usual STDP time window. Theoretical discussions are piedein [21] whereas
further biological evidences are reported in [45] whereé&learning processes can
be modelled using memory traces and reverberation mechafo, 25].

5.3.2 End sequence neurons

Each neuronin the contextlayer is also linked to an end seugeuron with STDP
synapses. In details, all neurons in each ring are connegdtbdhe corresponding
end sequence neuron arranged in an end sequence vector lgitlgth equal to

the number of rings in the context. A rewarding signal, ateéhd of a sequence,
activates the end sequence neuron for the outermost aictiyarthe context layer.

The synapses connecting this end sequence seuron with timemieuron in the
outermost ring will be reinforced accordingly. In our motied reward signal acts
as a dopaminergic stimulus on the end sequence seuron todréweasequence
just completed and reset the activity in the context layetttie learning of a new
sequence [25].

5.3.3 Neural models and learning mechanisms

Different neuron models were used in the architecture tegea the suitable dy-
namics needed in the subsystems: the Izhikevich’s spikéugans and the Morris-
Lecar model (ML) as introduced in Chapter 2. We adopted thééxich Tonic
spiking model in the ALs, context layer and end sequenceamsuwhereas the
Class | model was exploited in the LSN.

A decay rate has been introduced to consider dynamicallpgihg environ-
ments where the learned sequences could be forgotten ifmyetaewarding. De-
tails on applications of this learning paradigm to biorat®tre illustrated in [9].
Spiking neurons in the KC lattice are fully connected to theseurons via plas-
tic trainable synapses. A simple supervised learning ntebiased on the pseudo-
inverse algorithm [26] has been adopted and compared witihcaamental learning
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rule as illustrated in [30] where the spiking activity of theurons is transformed
in continuous signals using different functions allowitge tevaluation of an er-
ror needed for the learning. Different supervised learmmahods, based on back
propagation for spiking networks [22], have not been adibgdtee to the presence of
recurrent connections in the lattice. Although differexarhing approaches could be
taken into consideration [15], we introduced a simple ineeatal learning strategy
based on the least mean square algorithm, that adapts thpteyweight using the
computed error and the local activity generated by the pneystic neuron, working
with the synaptic response (i.e. continuous variablesg¢atsof with the spike train.
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Fig. 5.7 Comparison between the results of the read-out map obtaisied) a pseudo-inverse
(solid line) and an incremental (dashed line) learning et he power spectrum of the signals
(a) and the cumulative output of the sum neuron (b) are regort

The exit condition for the learning process is obtained nwwirig the spikes
emitted by the ML neurons: when a given number of spikes igectly emitted, the
learning is stopped and the weights of the read-out map aredsin the architec-
ture. To evaluate the performance of the learning procesmygarison between the
pseudo-inverse (standard solution) and the biologicatiyanplausible step-by-step
method was performed for a simple interpolation task. Tiselts, shown in Fig.
5.7, illustrate that using an incremental procedure thenlag process converges
on an oscillatory signal able to properly stimulate the esponding ML neuron;
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in fact, the maximum amount of allowable spikes is emittédah be noticed that
even if the output signal of the sum neuron does not exactlgimi&e sinusoidal
target, the classification phase is successfully accohgais
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Fig. 5.8 Activity of the Context layer when the sequen&BC is provided and the sub-sequences
are learned by the system. The red circles represent thee aurons, multiple chains are gener-
ated to trace the subsequen&&D, CD andD acquired in the Context layer.

5.3.4 Decision-making process

The architecture is able to store and consequently retriayéple sequences that
can be followed in a decision-making task. A rewarding sigpeovided to the
system at the end of each sequence, is used to evaluate tletame of each
stored sequence. In our model the level of reward associgitbdthe generated
sequence is directly related to the number of spikes enbitielde end neuron. As an
example after learning two sequené&BAandBDDC, the system needs to choose
which sequence to generate in front of the presentatiorediitst objects of the two
sequencesiandB). This is a typical case of landmark sequence following &xhe

a target place. The system internally simulates one and tthemther sequence
and compares the number of spikes of the end sequence neubathi cases. In
the reported example the sequem®DC is the most rewarding one and then the
behaviours related to this sequence are performed.
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5.3.5 Learning sequences and sub-sequences

The developed architecture, thanks to the Context layesldgyy, allows to learn
not only a sequence of elements but also the sub-sequertteddd therein. We
can exploit this capability offered by the model, allowiragrh presented element to
activate, besides a neuron included in the ring after thelzs/e one, also a neuron
in the first ring of the Context.

This procedure allows to consider each element of a sequnastarting point
for a new one. This leads to generation and storage of meltphins of context
activity: under presence of very noisy and complex condgithis strategy could be
useful to retain only statistically relevant sub-sequeribat are reinforced depend-
ing on the presentation frequency that is used to improvedheence reliability.

An example of learning for sub-sequences is shown in Fig.véh@re the evolu-
tion of the context layer is shown, while learning the se@exBCD. Each element
of the sequence creates a trace in the Context layer théd fitam the inner ring
and propagates towards the outer ones. The memory trace i@dhtext layer is
incrementally strengthened through multiple presematif the same sequence.

5.4 Robotic experiments

To evaluate the performance of the designed architectuserias of experiments
were carried out with a roving platform. The robot is equigppéth a PC on board
that communicates with a series of micro-controller-bdseatds used for the mo-
tor control. The sensory system consists of two ultrasoemd@rs used to detect
frontal obstacles and an omnidirectional camera includedéntify the presence
of visual targets with specific shapes in the environmeat @bjects of interest).
A first experiment is directly related to the persistencedvadur as shown in Fig.
5.9 (a). The robot is attracted by the objects shown on theitorsrplaced in the
arena and is able either to filter out the distracter, reptigahe attention capability
present in the wild-type insect, or to switch among the preskobjects, like in
the MB-defective case, as reported in Fig. 5.9 (b), whereabet is continuously
distracted by the presentation of the conflictual stimuli.

Honeybees are able to deal with a maze by using symbolic dge<$p], and
ants are able to navigate following routes [13], therefoeeavaluate our control
architecture on a roving robot facing with scenarios wheeeavailable paths from
the entrance to the exit of a maze, have to be acquired andatedl [51]. The
objective is to identify from the visual input the landmad€snterest and process
the acquired landmark features using a spiking neural rmé&tieolearn multiple
sequences of events/actions and the corresponding erpectards.

The information acquired through the visual system is pre@ssed using sim-
ple segmentation libraries, and then processed by the netw@entify the suitable
action (or more complex behaviours) to be performed. In topgsed experiment,
the robot can perform a turning action followed by a forwamtion to reach a new
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eresexteons: 1111 @@...

FOLLOWED OBJ:

Fig. 5.9 (a) Persistence experiment with a roving robot. Trajecfolfgpwed by the robot during the
experiment. The images acquired from an on-board fish-eyei@aare reported for three different
processing steps. The robot is able to persistently moveeidirection of the inverted T also when
a distracter is presented (i.e. the circle). After multiptesentations, the memory associated with
the inverted T fades out and the robot follows the circle.Ostraction experiment with a rover.
The presentation of a new object at step 12 is enough to clieegebot behaviour independently
of the time/energy already invested in following the prexsdarget. This figure was reprinted from
[5], Copyright (2015), with permission from Elsevier.

branch of the maze. Two monitors are used to simulate thepcesof landmarks in
each branch of the multiple T-maze. To guide the robot in taeenwwe considered a
double reversed T to indicate a right turn and a double cfari@ left turn. During
the learning phase, the correct actions to be performedrakeded showing only
one landmark each time on the monitor positioned in the cbttgning direction
(see Fig. 5.10 (a)). During the testing phase only one moisitased and the struc-
ture of the maze is modified to demonstrate that the robotlestabsolve it using
the knowledge acquired in the previous phase (Fig. 5.10 (b))

These results show that the robot is able to negotiate a mazesihg sym-
bolic cues as shown by honeybees [51]. We then included tipgesee learning
capabilities considering a more complex scenario. Thetrolit@lly learns two se-
quences of actions to be performed to solve the maze folptvio different routes
that guarantee, at the end, reward signals with differeluega The first sequence
(i.e.Inverted— T, Circle, Inverted— T) is associated to the left, right and then left
maze-branch selection, whereas the second learned seqiient, inverted—T)
is associated to a right and then left turning action. Theardwevel that modu-
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Fig. 5.10 Robotic experiments performed using different maze cordigpns for the learning
(a) and the testing (b) phase. Both the top and lateral vieyuieed from the starting point are
reported. The solid line represents the trajectory folld\lg the robot. The scenario is equivalent
to the biological experiments performed with honeybee$. [Bliring the learning phase the robot
memorizes the correct actions to be associated with eacenqexl element. During the testing
phase (b) the robot can solve a different maze using the laridprojected on a single monitor.

lates the stimulation of the end sequence neuron, is lowehé&dfirst sequence than
for the second one that should be preferred. During thentggthase the robot is
placed in front of two concurrent stimuli (i.. andinverted— T) to perform a
decision-making process. In this way the architecture ntermally retrieve differ-
ent sequences, depending on the initial stimulus, andtsetlee most performing
one depending on the spiking activity of the end neuron,e¢habdes the cumula-
tive level of rewards obtained, for that sequence, durirgléarning process. The
control structure internally simulates the outcome of the possible sequences to
be followed and, on the basis of the expected reward, sd¢textaost rewarding one
(Fig. 5.11).

5.5 Conclusions

The ability to understand the environment is a fundameridilfsr living beings
and needs to be acquired as a dynamic process. The contekidh avents occur
cannot be ignored, in fact, sometimes it is more importaahtthe events them-
selves. Starting from the biological evidences concerimnggct capabilities to learn
sequences of events and the known facts on the neural seaatesponsible for
these processes, in this work a neural-based architectuseduence representation
and learning is proposed. The proposed model is therefaedban experimental
evidences on insect neurodynamics and on specific hypatloesthe mechanisms
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Reward Level = 1

Sequence

( 1
11

Fig. 5.11 After learning two sequences, the robot selects the mosirtéag one performing a
decision-making process. The learned sequences areetpittthe two sides; the solid line rep-
resents the selected trajectory during the testing phase.

involved in the processing of time-related events. Stgrfrom basic capabilities
like attention, expectation and others, the MB-inspiredlelavas extended to in-
clude sequence learning with the addition of a context layseries of implementa-
tions is proposed: simulation and experimental resultsgiairoving robot, demon-
strate the effectiveness of the proposed architectureé¢ipaesents a key structure
for the development of a complete insect brain computatimoael. In conclusion,
the model architecture discussed here represents a fumdirbailding block to-
ward an artificial neural processing structure unifyindediént functionalities, and
performing different behaviours, that biological couptats are able to show.
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