
Chapter 3
Modelling spatial memory

Abstract Among the different capabilities of animals, the formationof spatial mem-
ories is crucial for their life. Living beings able to move, constantly need to orient
themselves in the environment to reach a target that might benot always visible. This
chapter investigates the process of spatial memory formation as an essential ingre-
dient for orientation in open and unstructured environments. Neural centres devoted
to spatial memory and path integration were deeply investigated in both rats and dif-
ferent insect species like ants, bees and fruit flies. In thischapter a neural-inspired
model for the formation of a spatial working memory is discussed considering some
key elements of the insect neural centres involved, in particular the ellipsoid body
of the central complex.

3.1 Introduction

Visual place learning and path integration are relevant capabilities for autonomous
robotic systems. Probing into bio-inspired solutions within the animal world, insects
like ants and fruit flies can walk in complex environments using different orientation
mechanisms: for tracking temporarily obscured targets andfor reaching places of
interest like a food source, a safe place or the nest. For species that construct nests,
the homing mechanisms are fundamental. In the case of desertants, the route to
the nest can be found also after long foraging travels in unstructured environments
[18]. In this case, mechanisms of path integration are important to avoid accuracy
problems [5]. Landmark navigation can be used to compensatethe cumulative errors
typical of odometric-based strategies [7].

Neural structures based on mutually coupled populations ofexcitatory and in-
hibitory neurons were used to model the navigation behaviour of desert ant [10].
The formation of activity bumps within the neuron populations is used to embed the
system orientation in the neural structure. Different mathematical formulations were
also considered based on the sinusoidal arrays that condensate the representation of
the information using vectors [19]. Besides path integration, interesting approaches
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for landmark navigation were developed using recurrent neural networks [8] and
vision-based strategies that involve population of circular array cells [9].

Together with insects, rats were a useful source of inspiration. In these animals
the head direction is codified in cells of the limbic system [17, 15]. While moving in
the environment, the animal internally encodes its orientation using a persistent hill
of neural activity in a ring-shaped population of excitatory neurons. The position
of the activity peak is shifted while turning, using the angular head velocity that is
provided as input to other two rings of inhibitory neurons [17].

As previously introduced, insects are able to use spatial information to memorize
visual features (spatial distribution, color, etc.) so that they can return to interesting
places and can avoid dangerous objects. Furthermore, also insects are able to solve a
problem similar to the famous Morris water maze problem [14], i.e. an experimental
setup where the animal is forced to reach a safe, invisible place in an tank, relying
only on external (extra-maze) cues. In insects, the neural circuits responsible for
these behaviours need to be further analysed.

The idea to considerDrosophila melanogasteras a model organism has been
introduced since chapter 1: it is followed here and in the following chapters. This
insect species is particularly interesting for the possibility to apply genetic manip-
ulation tools, to identify the neural processes at the basisof a specific behaviours
to be further implemented and demonstrated in bio-inspiredrobots. Concerning the
formation of spatial working memories, even if flies do not create a nest, target-
ing behaviours are continuously used. Therefore, retaining and recalling a targets
position is needed especially when this disappears for a short time.

One experiment used to demonstrate the fly’s capabilities inspatial orientation is
performed using the detour paradigm where the presentationof a distracter allows
to evaluate the robustness of the developed spatial memory also in presence of dis-
turbances [13, 12]. The available genetic manipulation tools identified the important
role of the central complex and in particular of the ellipsoid body (EB) in the spatial
memory formation process.

In this chapter, on the basis of the neural model proposed in [17] and directly
related to orientation in mammals, an adaptation to the insect EB structure has been
considered including a further processing level needed forthe exploitation of the
spatial information contained in the spiking neural structure [2]. Further research
led to the discovery of such behaviours as landmark orientation and path integration
in specific neural structures within the fruit fly ellipsoid body [16].

3.2 Ellipsoid body model

To model the creation of a spatial working memory in the ellipsoid body, three
populations of interconnected neurons have been considered.

We took inspiration from other existing models where a concentration of spiking
activity in a part of the network is used to store the heading position of the system
acquired through proprioceptive sensors [10, 1].
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The model contains one population of excitatory cells (NE = 20) and two popula-
tions of inhibitory cells (NI1 = 20 andNI2 = 20 neurons). The neuron model consid-
ered for the simulation was the Leaky Integrate and Fire whose characteristics were
underlined in chapter 2. The number of neurons considered for the modelling pur-
poses is related to the known neurobiological information on the central complex in
Drosophila[21] as also briefly discussed in chapter 1. Neurons in each population
are labelled by their heading directions and distributed ona ring that follows the EB
circular shape.

The connection weights among neurons depend on their mutualangular posi-
tions in the chain. A scheme of the network is reported in Fig.3.1 where the three
neural populations together with the connection topology and the external inputs are
illustrated.

Each inhibitory neuron has all-to-all connections betweenother neurons of the
same type, with synaptic weights that follow the distribution reported in Fig. 3.2.
The excitatory neurons have all-to-all connections with the inhibitory populations
with a weight profile reported in Fig. 3.2, whereas each neuron of the inhibitory pop-
ulation is connected with only one neuron of the excitatory population: the neuron
that corresponds to the angleθ +θ0 in populationI1, inhibits the excitatory neuron
that corresponds to the angleθ ; this receives also a current contribution from the
neuron labeled withθ − θ0 in populationI2. In the original model the connection
scheme included all-to-all connections also for the interaction between these layers
[17]; the simplification presents minimum drawbacks in terms of level of noise in
the network as will be presented in the simulations.

Fig. 3.1 Simple scheme of the EB model: one population of excitatory (E) and two populations
of inhibitory (I1 andI2) neurons are indicated. Excitatory connections are mediated by AMPA and
NMDA receptors whereas GABA is considered for inhibitory connections. In the model a Poisson
spike train at 1800 Hz is provided as input to all the network neurons. The presence of a landmark
is modelled with a constant input to a given angular position. All-to-all connections between the
inhibitory neurons are considered in the model.
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Fig. 3.2 Weight distribution for the synaptic connections involving the neuron populationE, I1
andI2. This figure was reprinted from [2], Copyright (2013), with permission from IEEE.

Details on the synaptic connections models via NMDA receptors and parameters
are reported in [17] in relation to mammals. However, the presence of several recep-
tors, including NMDA [11] was identified in the fly central complex. Moreover the
role of NMDA receptors for long-term memory consolidation in the ellipsoid body
was assessed[20].

The network receives information on the angular velocity that is integrated
through neural processing to provide step-by-step the system orientation.

The angular velocity signal is provided to the network usingan uncorrelated
Poisson spike train B with basic frequencyf = 1800Hz (see fig3.1). Experiments
with other spiking distributions (e.g. regular train) werealso carried out obtaining
similar results. During a rotation performed by the system,the corresponding angu-
lar speed is acquired by the network, giving rise to an unbalance between the input
on the two inhibitory populations.

The frequency bias (B0) used in this case has been characterized through sim-
ulations as shown in Fig. 3.6. Finally an external input current (i.e.I(θ )) can be
assigned to a neuron in the excitatory population to indicate the presence of a land-
mark in a specific angular position. The behaviour of the network consists of a shift
of the hill of activity to reach the landmark position.

The first experiments performed with the proposed model weredesigned in ab-
sence of sensory and/or self-motion signals: in this case the insect heading is as-
sumed as fixed. In our model, this is implemented by setting tozero (B0 = 0Hz)
the head velocity bias of the external afferent inputs provided to the two inhibitory
populations. The network, without external stimuli, quickly reaches a steady state
condition with a bell-shaped activity profile. The symmetries of the network do not
allow to predict where the peak of the activity hill can arise(i.e. depending on the
initial conditions, level of noise, etc.). The absence of synaptic connections in the
excitatory population indicates that the hill of activity is generated and maintained
by the combination of the external excitatory input and the internal inhibitory in-
put coming from the populationsI1 andI2. When the frequency biasB0 is positive
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Fig. 3.3 Relation between the frequency bias (B0) in the Poisson-spike-train and the correspondent
angular velocity of the hill of activity in the ring neurons.

(negative) a clockwise (anti-clockwise) rotation of the hill of spiking activity is de-
termined.

The presence of visual landmarks is modelled with an input current in the ex-
citatory population in correspondence to the landmark position. The landmark can
be also used as a calibration mechanism to shift the hill to a specific position used
as reference point. During movements the accumulated errorcan be compensated
using visual landmarks placed in known positions.

The developed architecture is able to store the animal’s heading direction through
a bell-shaped activity profile in the excitatory population. To solve more complex
tasks like the detour paradigm [13], a spatial integration of the distance travelled
by the agent is required. For the sake of simplicity we consider two basic motion
behaviours: forward movement and turning on the spot.

An additional ring of neurons (i.e. population P) has been added to the excita-
tory population to work as a path integrator. These neurons were modelled with a
simple linear transfer function. A scheme of the adapted network is reported in Fig.
3.4 where four distinct populations of neurons are considered. The synaptic connec-
tions used to connect population E and population P neurons,are supposed to be
characterized by a facilitating dynamics as introduced in chapter 2:

u̇n =U−u/F + kδn(t− ts)δ (B0) (3.1)

where n= 1..N, U=0, F is a fading factor and k is a gain related to the system
speed,δn(t− ts) represents the spikes emitted at timets by neurons of population E.

A particularity of the proposed model is the presence of a gating function (δ (B0))
that allows the contribution of a spike at timets only if the system is in forward mo-
tion (i.e.B0 = 0Hz). When the system is turning, the population P is not activated
because the action is performed without spatial translation. The parameter F repre-
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sents the rate of discharge of the synaptic state variable and has been fixed to a value
that allows to retain the information in a time window of about 5s as also shown in
the biological case [13].

Fig. 3.4 Extension of the network with the introduction of a fourth ring needed to perform the
detour experiments. Population P is used to integrate the forward motion using a gating function
that mediates the activity avoiding to consider turning-on-the-spot manoeuvres.

3.3 Model simulations

The capabilities of the proposed neural structure were evaluated through a series
of simulations. The first experiments consist of the positioning the hill of activity
on a fixed reference angle to initialize the network dynamics. The symmetry of the
structure determines a variable spatial distribution of the initial hill that depends
on the initial conditions. To force the formation in a given position, the landmark
is applied on a neuron coding the spatial orientation. In Fig. 3.5 the average firing
rate within populationsE andI1 is shown. The behaviour of populationI2 is similar
to I1 but slightly shifted in order to create two boundaries on thetwo sides of the
population E blocking the hill of activity in a narrow area. Alandmark is applied for
a time of 0.5s to the neurons next to 180o through an input current formulated as a
Gaussian function:

I = Ae
−

(ϑ−ϑ0)
2

2σ2 (3.2)
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Fig. 3.5 Time evolution of the firing rate in the populationE andI1. The behaviour ofI2 is similar
to I1 with a shift on the other side with respect to populationE. An external input used as landmark,
is applied for 0.5sallowing the hill formation in a specific area of the ring. This figure was reprinted
from [2], Copyright (2013), with permission from IEEE.

whereA= 9.4nA, σ = 24o andϑ0 = 180o.
The effect of a bias currentB0 applied for 1s in order to unbalance the network

activity is reported in Fig. 3.6 where the shift of the hill ofactivity of population P
is reported.
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Fig. 3.6 Effect of an unbalance in the external input frequency distribution. A movement of the
spiking activity of the excitatory neurons arises.

An important difference with respect to other works [17] consists of the reduction
of synaptic connections between layers creating a more local than global network.
Moreover, the reduced number of neurons in the rings can produce residual activity
in some neurons far from the hill that in any case does not compromise the stability
of the system behaviour.

Population P integrates the activity of population E depending on the robot speed
that is used as a gain (k in eq. 3.1). A calibration procedure is used to find the gain
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value that converts the neural activity into a distance travelled expressed in a generic
measurement unit.

To further evaluate the system performance, the network wasstimulated simulat-
ing a forward movement for 1s followed by a rotation of 130o and a second forward
action for another 1s; a constant speed of 1m/swas considered. The angular veloc-
ity was provided to the network through aB0 = 920Hz for 0.5s. A landmark was
also provided to guide the initial formation of the hill in a position around 0o. The
network, working as a short-term spatial memory, provides as output the estimated
position and orientation of the agent.

During the rotation the population P is disconnected from population E using the
gating parameterk = 0 in eq. 3.1 and the rotation is considered on the spot (see eq.
3.1). The network integrates in time the speed movement of the agent making an
estimation of its spatial position. The heading angle stored by the system during the
3s simulation is reported in Fig. 3.7. The normalized activity of population P that
integrates in time the state of population E, is shown in Fig.3.8. To obtain, step by
step, the internally estimated current position of the agent, a vectorial summation
is performed considering neurons in population P as polar representation of spatial
vectors.
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Fig. 3.7 Time evolution of the heading angle of an agent during a 3ssimulation, while performing
a forward movement, a turning on the spot of 130o and a second forward movement. This figure
was reprinted from [2], Copyright (2013), with permission from IEEE.

A comparison between the real trajectory and the internallymemorized one for a
complex trajectory containing several straight lines and rotations, is reported in Fig.
3.9. The cumulated error is a consequence of the realistic processing structure and
in particular it is due to the relatively low number of neurons distributed in the rings
that determine the spatial resolution (i.e. about 18o each neuron).

Therefore, the bio-inspired neural structure can be improved for robotic appli-
cations by increasing the spatial resolution to obtain better performance. The be-
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Fig. 3.8 Normalized activity of population P distributed in the different angular positions. The
estimated final position of the agent is evaluated through a simple vectorial sum of the neural
activities expressed in a polar coordinate system. This figure was reprinted from [2], Copyright
(2013), with permission from IEEE.
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Fig. 3.9 Comparison between the real trajectory followed by the agent and the internal estimated
position stored in the EB.
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haviour of the system can be appreciated also in standard tests used in robotics like
navigation on a square path [6]. In this simulation each rotation of 90o corresponds
to a Bo = 800Hz applied for 0.5s, and each segment to a forward movement at 1
unit/s for 0.5s. In Fig. 3.10 the real trajectory is compared with the step-by-step
estimated position provided by the network.
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Fig. 3.10 Comparison between the real trajectory followed by the agent while performing a
squared path and the estimated position stored in the EB. This figure was reprinted from [2], Copy-
right (2013), with permission from IEEE.

To compare the network behaviour with the insect experiments, the detour
paradigm was reproduced.

The visually guided navigation in flies is mainly dependent on the central com-
plex. When a target disappears from the scene and a new attractive object appears
(i.e. a distractor), the insect stores in the EB neural structure the estimated spa-
tial position of the obscured target that was followed in theprevious time window.
This estimation can be obtained using corollary discharge (efference copy) of self-
motion. Distance is coded using, as measurement unit, the number of steps estimated
to reach the object [4, 3]. This spatial vector is coded in theneural population P. The
trajectory followed while the insect is attracted by the distractor is integrated in the
network to allow the recovery of the original target position within a limited time
due to the fading memory.

Three different steps can be distinguished for the simulation:

1. when the target disappears, the EB stores the target estimated position in polar
coordinates charging the corresponding neuron of population P with a current
proportional to the distance (coded in number of steps);
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2. then the hill of activity of population E is forced to arisein a position rotated by
180o. Subsequently the path followed during the presence of a distractor placed
at 90o is memorized;

3. when the distractor disappears, the information accumulated in population P is
used to estimate the spatial position of the first target.
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Fig. 3.11 Detour experiment: trajectory stored by the system attracted by the distractor and esti-
mated trajectory to reach the position of the disappeared target. (a) Effect of the fading parameter
F while recovering the target position. (b) The distractor was applied for different time windows
from 0.5s to 2.5s
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The trajectory stored by the architecture during the effectof the distractor and
the estimated trajectory followed to reach the disappearedtarget are reported in Fig.
3.11 where the role of the fading parameter is underlined together with the effect of
an increase in the distraction time.

3.4 Conclusions

In this chapter a computational model of theDrosophilaellipsoid body based on
a four-ring spiking network is developed. The neural structure codes the heading
direction using a hill of spiking activity in a ring-shaped structure. Simulation re-
sults show the capability of the system to store spatial position on a polar coordinate
system. The proposed model is able to show behaviours similar to experiments with
Drosophila melanogasterin the detour paradigm. Further details on the proposed
architecture can be found in [2]; key elements contained in this model were sub-
sequently found in the neural networks within the EB ofDrosophila in biological
experiments [16], further assessing the role of system models for a potential and
fruitful subsequent biological assessment. Although the model was assessed only in
simulation, the architecture proposed can be easily extended and applied on robotic
roving/walking systems.
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