Chapter 3
Modelling spatial memory

Abstract Among the different capabilities of animals, the formatidispatial mem-
ories is crucial for their life. Living beings able to movenstantly need to orient
themselves in the environmentto reach a target that mighdbalways visible. This
chapter investigates the process of spatial memory foomais an essential ingre-
dient for orientation in open and unstructured environmmexeéural centres devoted
to spatial memory and path integration were deeply invatidjin both rats and dif-
ferent insect species like ants, bees and fruit flies. Indh&pter a neural-inspired
model for the formation of a spatial working memory is dissegsconsidering some
key elements of the insect neural centres involved, in @adr the ellipsoid body
of the central complex.

3.1 Introduction

Visual place learning and path integration are relevanabdipies for autonomous
robotic systems. Probing into bio-inspired solutions withe animal world, insects
like ants and fruit flies can walk in complex environmentsigglifferent orientation
mechanisms: for tracking temporarily obscured targetsfandeaching places of
interest like a food source, a safe place or the nest. Foiesptiat construct nests,
the homing mechanisms are fundamental. In the case of dastsitthe route to
the nest can be found also after long foraging travels inruggired environments
[18]. In this case, mechanisms of path integration are it@mbito avoid accuracy
problems [5]. Landmark navigation can be used to competisatimulative errors
typical of odometric-based strategies [7].

Neural structures based on mutually coupled populatiorexoitatory and in-
hibitory neurons were used to model the navigation behawbudesert ant [10].
The formation of activity bumps within the neuron populagas used to embed the
system orientation in the neural structure. Different reathtical formulations were
also considered based on the sinusoidal arrays that comtéeths representation of
the information using vectors [19]. Besides path integratinteresting approaches
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14 3 Modelling spatial memory

for landmark navigation were developed using recurrentaiewetworks [8] and
vision-based strategies that involve population of ciacalrray cells [9].

Together with insects, rats were a useful source of ingpiratn these animals
the head direction is codified in cells of the limbic system, [15]. While moving in
the environment, the animal internally encodes its ori@mtausing a persistent hill
of neural activity in a ring-shaped population of excitgtaeurons. The position
of the activity peak is shifted while turning, using the alaginead velocity that is
provided as input to other two rings of inhibitory neurong][1

As previously introduced, insects are able to use spafairimation to memorize
visual features (spatial distribution, color, etc.) sa thay can return to interesting
places and can avoid dangerous objects. Furthermorenalscis are able to solve a
problem similar to the famous Morris water maze problem [iLd] an experimental
setup where the animal is forced to reach a safe, invisilaleepin an tank, relying
only on external (extra-maze) cues. In insects, the neunalits responsible for
these behaviours need to be further analysed.

The idea to consideDrosophila melanogasteas a model organism has been
introduced since chapter 1: it is followed here and in théofeihg chapters. This
insect species is particularly interesting for the posigitio apply genetic manip-
ulation tools, to identify the neural processes at the bafsés specific behaviours
to be further implemented and demonstrated in bio-inspivbdts. Concerning the
formation of spatial working memories, even if flies do notate a nest, target-
ing behaviours are continuously used. Therefore, retgiaimd recalling a targets
position is needed especially when this disappears for & she.

One experiment used to demonstrate the fly’s capabilitispatial orientation is
performed using the detour paradigm where the presentatiardistracter allows
to evaluate the robustness of the developed spatial menswyrepresence of dis-
turbances[13, 12]. The available genetic manipulatiotstmentified the important
role of the central complex and in particular of the elligsbody (EB) in the spatial
memory formation process.

In this chapter, on the basis of the neural model proposediihdnd directly
related to orientation in mammals, an adaptation to thecirtsB structure has been
considered including a further processing level neededh®rexploitation of the
spatial information contained in the spiking neural stuwet[2]. Further research
led to the discovery of such behaviours as landmark oriemtand path integration
in specific neural structures within the fruit fly ellipsoiddy [16].

3.2 Ellipsoid body model

To model the creation of a spatial working memory in the ebid body, three
populations of interconnected neurons have been conslidere

We took inspiration from other existing models where a com@gion of spiking
activity in a part of the network is used to store the headiogjtpn of the system
acquired through proprioceptive sensors [10, 1].
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The model contains one population of excitatory cels £ 20) and two popula-
tions of inhibitory cells ;1 = 20 andN,, = 20 neurons). The neuron model consid-
ered for the simulation was the Leaky Integrate and Fire wltbsiracteristics were
underlined in chapter 2. The number of neurons considenethéomodelling pur-
poses is related to the known neurobiological informatioth® central complex in
Drosophila[21] as also briefly discussed in chapter 1. Neurons in eaplulpton
are labelled by their heading directions and distributed dng that follows the EB
circular shape.

The connection weights among neurons depend on their mahgallar posi-
tions in the chain. A scheme of the network is reported in Bid.where the three
neural populations together with the connection topolagytae external inputs are
illustrated.

Each inhibitory neuron has all-to-all connections betwetrer neurons of the
same type, with synaptic weights that follow the distribatreported in Fig. 3.2.
The excitatory neurons have all-to-all connections with itihibitory populations
with a weight profile reported in Fig. 3.2, whereas each neofdhe inhibitory pop-
ulation is connected with only one neuron of the excitataygydation: the neuron
that corresponds to the andlet- 6y in populationly, inhibits the excitatory neuron
that corresponds to the andgde this receives also a current contribution from the
neuron labeled witl® — 6y in populationl,. In the original model the connection
scheme included all-to-all connections also for the irttioa between these layers
[17]; the simplification presents minimum drawbacks in terofi level of noise in
the network as will be presented in the simulations.

Population E
Synaptic input

— GABA
<— NMDA

<— AMPA

<«— External

B+ B t 1(8) B-B,
g B (Landmark) 0
(Poisson train
1800Hz)

Fig. 3.1 Simple scheme of the EB model: one population of excitat&)yand two populations
of inhibitory (I; andl,) neurons are indicated. Excitatory connections are medliay AMPA and
NMDA receptors whereas GABA is considered for inhibitorynections. In the model a Poisson
spike train at 1800 Hz is provided as input to all the netwarknons. The presence of a landmark
is modelled with a constant input to a given angular posit@firto-all connections between the
inhibitory neurons are considered in the model.
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Fig. 3.2 Weight distribution for the synaptic connections involyithe neuron populatiok, 11
andl,. This figure was reprinted from [2], Copyright (2013), witermission from IEEE.

Details on the synaptic connections models via NMDA recesdod parameters
are reported in [17] in relation to mammals. However, thesenee of several recep-
tors, including NMDA [11] was identified in the fly central cpfiex. Moreover the
role of NMDA receptors for long-term memory consolidatiorthe ellipsoid body
was assessed[20].

The network receives information on the angular velocitgttls integrated
through neural processing to provide step-by-step thesystientation.

The angular velocity signal is provided to the network usamuncorrelated
Poisson spike train B with basic frequenty= 180(Hz (see fig3.1). Experiments
with other spiking distributions (e.g. regular train) wexlso carried out obtaining
similar results. During a rotation performed by the systdra,corresponding angu-
lar speed is acquired by the network, giving rise to an umtzadoetween the input
on the two inhibitory populations.

The frequency biasBp) used in this case has been characterized through sim-
ulations as shown in Fig. 3.6. Finally an external input entr(i.e.1(6)) can be
assigned to a neuron in the excitatory population to indita¢ presence of a land-
mark in a specific angular position. The behaviour of the netwonsists of a shift
of the hill of activity to reach the landmark position.

The first experiments performed with the proposed model westgned in ab-
sence of sensory and/or self-motion signals: in this casartkect heading is as-
sumed as fixed. In our model, this is implemented by settingeto By = 0H2)
the head velocity bias of the external afferent inputs mieslito the two inhibitory
populations. The network, without external stimuli, qujckeaches a steady state
condition with a bell-shaped activity profile. The symmesrof the network do not
allow to predict where the peak of the activity hill can arfse. depending on the
initial conditions, level of noise, etc.). The absence afagytic connections in the
excitatory population indicates that the hill of activis/generated and maintained
by the combination of the external excitatory input and thterinal inhibitory in-
put coming from the populatiorig andl,. When the frequency bigB is positive
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Fig. 3.3 Relation between the frequency bisg)in the Poisson-spike-train and the correspondent
angular velocity of the hill of activity in the ring neurons.

(negative) a clockwise (anti-clockwise) rotation of thé bf spiking activity is de-
termined.

The presence of visual landmarks is modelled with an inputectt in the ex-
citatory population in correspondence to the landmarktjpesiThe landmark can
be also used as a calibration mechanism to shift the hill fpegific position used
as reference point. During movements the accumulated earobe compensated
using visual landmarks placed in known positions.

The developed architecture is able to store the animalgihgalirection through
a bell-shaped activity profile in the excitatory populatido solve more complex
tasks like the detour paradigm [13], a spatial integratibthe distance travelled
by the agent is required. For the sake of simplicity we cagrstd/o basic motion
behaviours: forward movement and turning on the spot.

An additional ring of neurons (i.e. population P) has beeteddo the excita-
tory population to work as a path integrator. These neurogrewnodelled with a
simple linear transfer function. A scheme of the adaptedoetis reported in Fig.
3.4 where four distinct populations of neurons are consideFhe synaptic connec-
tions used to connect population E and population P neuayessupposed to be
characterized by a facilitating dynamics as introducechipter 2:

tn = U — U/F + kén(t —ts)5(Bo) (3.1)

where n= 1..N, U=0, F is a fading factor and k is a gain relatethé system
speeddn(t —ts) represents the spikes emitted at tigiby neurons of population E.

A particularity of the proposed model is the presence of mgditinction ©(Bp))
that allows the contribution of a spike at tirgeonly if the system is in forward mo-
tion (i.e. By = OHZ). When the system is turning, the population P is not actiyat
because the action is performed without spatial transiafibe parameter F repre-
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sents the rate of discharge of the synaptic state variabléasnbeen fixed to a value
that allows to retain the information in a time window of abbs as also shown in
the biological case [13].

Population P

Population 14

/O\

Population I,

+ " +
T Angular velocity ?
B B
Poisson spike trains
INPUTS

Fig. 3.4 Extension of the network with the introduction of a fourthgineeded to perform the
detour experiments. Population P is used to integrate tiweafd motion using a gating function
that mediates the activity avoiding to consider turningtioe-spot manoeuvres.

3.3 Model simulations

The capabilities of the proposed neural structure wereuat@dl through a series
of simulations. The first experiments consist of the positig the hill of activity
on a fixed reference angle to initialize the network dynaniite symmetry of the
structure determines a variable spatial distribution @f ithitial hill that depends
on the initial conditions. To force the formation in a giveosyiion, the landmark
is applied on a neuron coding the spatial orientation. In Bif the average firing
rate within population& andl; is shown. The behaviour of populatibnis similar
to 11 but slightly shifted in order to create two boundaries ontthe sides of the
population E blocking the hill of activity in a narrow arealadmark is applied for
a time of 05s to the neurons next to 18@hrough an input current formulated as a
Gaussian function:

_(8-99?
| =Ae 202 (3.2)
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Fig. 3.5 Time evolution of the firing rate in the populati@and!;. The behaviour of; is similar
to 11 with a shift on the other side with respect to populaiorAn external input used as landmark,
is applied for 05sallowing the hill formation in a specific area of the ring. $figure was reprinted
from [2], Copyright (2013), with permission from |IEEE.

whereA = 9.4nA, 0 = 24° andJdy = 18C°.

The effect of a bias currey applied for kin order to unbalance the network
activity is reported in Fig. 3.6 where the shift of the hilladtivity of population P
is reported.

Hill of activity population E

firing rate (Hz)

Preferred direction(degrees)

Fig. 3.6 Effect of an unbalance in the external input frequency ilistion. A movement of the
spiking activity of the excitatory neurons arises.

An important difference with respect to other works [17] sists of the reduction
of synaptic connections between layers creating a moré tbaa global network.
Moreover, the reduced number of neurons in the rings canygrckesidual activity
in some neurons far from the hill that in any case does not comjse the stability
of the system behaviour.

Population P integrates the activity of population E dejregndn the robot speed
that is used as a gain (k in eq. 3.1). A calibration proceduresed to find the gain
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value that converts the neural activity into a distancestitad expressed in a generic
measurement unit.

To further evaluate the system performance, the networlstimsilated simulat-
ing a forward movement for 1s followed by a rotation of 23@d a second forward
action for another¢ a constant speed ofif/swas considered. The angular veloc-
ity was provided to the network throughBgy = 920Hz for 0.5s. A landmark was
also provided to guide the initial formation of the hill in agition around . The
network, working as a short-term spatial memory, provideswput the estimated
position and orientation of the agent.

During the rotation the population P is disconnected fromuytation E using the
gating parameter = 0 in eq. 3.1 and the rotation is considered on the spot (see eq.
3.1). The network integrates in time the speed movementeatent making an
estimation of its spatial position. The heading angle stémethe system during the
3s simulation is reported in Fig. 3.7. The normalized atstieif population P that
integrates in time the state of population E, is shown in Bi§. To obtain, step by
step, the internally estimated current position of the &gewectorial summation
is performed considering neurons in population P as pofaesentation of spatial
vectors.
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Fig. 3.7 Time evolution of the heading angle of an agent during sidulation, while performing
a forward movement, a turning on the spot of 430id a second forward movement. This figure
was reprinted from [2], Copyright (2013), with permissioarh IEEE.

A comparison between the real trajectory and the intermaélynorized one for a
complex trajectory containing several straight lines antdtions, is reported in Fig.
3.9. The cumulated error is a consequence of the realistivegsing structure and
in particular it is due to the relatively low number of neusatistributed in the rings
that determine the spatial resolution (i.e. aboltd&ch neuron).

Therefore, the bio-inspired neural structure can be imgdder robotic appli-
cations by increasing the spatial resolution to obtaindbgierformance. The be-
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Fig. 3.8 Normalized activity of population P distributed in the difént angular positions. The
estimated final position of the agent is evaluated throughmple vectorial sum of the neural
activities expressed in a polar coordinate system. Thigdiguas reprinted from [2], Copyright
(2013), with permission from IEEE.
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Fig. 3.9 Comparison between the real trajectory followed by the tiged the internal estimated
position stored in the EB.
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haviour of the system can be appreciated also in standdsdu®sd in robotics like
navigation on a square path [6]. In this simulation eachtiaaof 9¢° corresponds

to aB, = 800Hz applied for 05s, and each segment to a forward movement at 1
unit/s for Q5s. In Fig. 3.10 the real trajectory is compared with the stggstep

estimated position provided by the network.
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Fig. 3.10 Comparison between the real trajectory followed by the tgdrle performing a
squared path and the estimated position stored in the EB fifjiire was reprinted from [2], Copy-

right (2013), with permission from IEEE.

To compare the network behaviour with the insect experigetiie detour
paradigm was reproduced.
The visually guided navigation in flies is mainly dependemtlee central com-
plex. When a target disappears from the scene and a newtia#rabject appears
(i.e. a distractor), the insect stores in the EB neural &irecthe estimated spa-
tial position of the obscured target that was followed in phevious time window.
This estimation can be obtained using corollary dischaefference copy) of self-
motion. Distance is coded using, as measurement unit, tdeauof steps estimated
to reach the object [4, 3]. This spatial vector is coded imidigral population P. The
trajectory followed while the insect is attracted by themistor is integrated in the
network to allow the recovery of the original target positiithin a limited time
due to the fading memory.
Three different steps can be distinguished for the sinafati
1. when the target disappears, the EB stores the targetagstirposition in polar
coordinates charging the corresponding neuron of populd®i with a current
proportional to the distance (coded in number of steps);
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2. then the hill of activity of population E is forced to arisea position rotated by
18C°. Subsequently the path followed during the presence ofteadisr placed
at 9¢ is memorized;

3. when the distractor disappears, the information accatedlin population P is
used to estimate the spatial position of the first target.
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Fig. 3.11 Detour experiment: trajectory stored by the system atthby the distractor and esti-
mated trajectory to reach the position of the disappeamegtal@) Effect of the fading parameter
F while recovering the target position. (b) The distractasvapplied for different time windows
from 0.5sto0 2.5
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The trajectory stored by the architecture during the eftédhe distractor and
the estimated trajectory followed to reach the disappeiarget are reported in Fig.
3.11 where the role of the fading parameter is underlinedtteey with the effect of
an increase in the distraction time.

3.4 Conclusions

In this chapter a computational model of tBeosophilaellipsoid body based on
a four-ring spiking network is developed. The neural stitetcodes the heading
direction using a hill of spiking activity in a ring-shapetuture. Simulation re-
sults show the capability of the system to store spatiatjposon a polar coordinate
system. The proposed model is able to show behaviours sitoiéxperiments with
Drosophila melanogastan the detour paradigm. Further details on the proposed
architecture can be found in [2]; key elements containedhi model were sub-
sequently found in the neural networks within the EBDOwbsophilain biological
experiments [16], further assessing the role of system iadde a potential and
fruitful subsequent biological assessment. Although tbe@hwas assessed only in
simulation, the architecture proposed can be easily ertadd applied on robotic
roving/walking systems.
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