
Chapter 2
Non-linear neuro-inspired circuits and systems:
processing and learning issues

Abstract In this chapter the main elements useful for the design and realization of
the neural architectures reported in the following chapters will be presented. Con-
sidering spiking and non-spiking neurons, the models used for implementing each
of them, the synaptic models, the basic learning and plasticity algorithms and the
network architectures will be introduced and analysed. Thekey elements that led
to their selection and application in the developed neuro-inspired systems will be
discussed briefly.

2.1 Introduction

To model neuro-inspired circuits and systems, we need basicblocks that can be
combined with each other, to develop complex networks. In the following chap-
ters, we will present neuro-inspired models designed to solve tasks that range from
the control of locomotion to the learning of spatial memory and behavioural se-
quences. Depending on the peculiar characteristics of the modelled system, different
basic processing units were considered. In the following sections, all the ingredients
needed will be introduced and discussed.

As far as the neural models are considered, we can identify two elementary pro-
cessing units: spiking and non-spiking neurons. Spiking neuron models are used
to develop bio-inspired neural networks that try to mimic the information trans-
fer that occurs in the brain which is mainly based on spiking events. The use of
spikes improves the robustness of the network to noise because the spike can be
more easily propagated through neurons even even under low signal-to-noise condi-
tions. Networks based on spiking neurons can perform different types of computa-
tions from classification to working-memory formation and sequence discrimination
[1, 32, 17]. To connect spiking neurons with each other, different synaptic models
can be considered [12, 27]. The synaptic transfer function can be either a simple
weight or a more complex system with one or several state variables. Furthermore,
the parameters of the synaptic model can be subject to a learning process because

3



4 2 Non-linear neuro-inspired circuits and systems: processing and learning issues

it is important to store the acquired knowledge coming from the environment in the
neural structure [6, 9].

Even if the spiking activity is the most common way to exchange information
between in-vivo neurons, there are also examples of non-spiking neurons that reg-
ulate through slow dynamics specific rhythmic activities like in the MolluskClione
mollusk [10]. They are also common in insect nervous systems, mainly to regulate
motor activity [13] [29]. These neurons work like pulse generators and can also
maintain a plateau when needed.
Even in presence of spiking neurons, there is the possibility to sum the activity of
a group of spiking/bursting neurons using higher level indicators as for instance the
mean firing rate that is a quantitative variable able to indicate the level of activity
in a population of neurons. This strategy, exploited in several works, is part of the
so-calledneural fieldapproach [18, 24].

The design of the basic blocks, together with the topology ofthe neural networks
are relevant aspects to be addressed also in view of a software/hardware implemen-
tation of the architectures. Several solutions could be taken into account to develop
neuromorphic circuits [20, 34, 14]: microcontrollers, FPGA, FPAA, integrated cir-
cuits and GPU accelerators are some of the potential devicesthat can be successfully
considered.

2.2 Spiking neural models

Among the different models available for modelling spikingneurons, we considered
different options: the leaky integrate-and-fire (LIF), theIzhikevich’s model and the
Morris-Lecar resonant neuron.

2.2.1 Leaky integrate-and-fire model

The leaky integrate-and-fire model is one of the first computational models applied
to develop neuro-inspired networks [33][15]. Its main advantage consists of the sim-
plicity of the equations. In fact, the system works like a leaky integrator. The time
evolution of the membrane potentialVm(t) of each neuron is described by the fol-
lowing equation:

CmV̇m(t) =−gL(Vm(t)−VL)− Isyn(t) (2.1)

whereCm is the membrane capacitance (typical values adopted are: 0.5 nF for
excitatory cells and 0.2 nF for inhibitory cells);gL is the leak conductance (0.025µS
for excitatory cells and 0.02µS for inhibitory cells), andVL is the resting potential
(-70 mV for both excitatory and inhibitory cells). When the membrane potential of a
neuron reaches a threshold (i.e. -50 mV) a spike occurs and the membrane potential
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returns to a reset potential (i.e. -60 mV). The last termIsyn(t) represents the total
synaptic input current of the cell.

2.2.2 Izhikevich’s neural model

Izhikevich’s neural model, proposed in [22], is well known in the literature and
offers many advantages from the computational point of view. The model is repre-
sented by the following differential equations:

v̇= 0.04v2+5v+140−u+ I
u̇= a(bv−u)

(2.2)

with the spike-resetting

if v≥ 0.03, then

{

v← c
u← u+d

(2.3)

wherev is the membrane potential of the neuron,u is a recovery variable andI is
the synaptic current. The values assigned to the parametersa,b,c andd will vary
as they are depending on the particular neural structures that will be introduced.
Varying the neuron parameters we can obtain several different behaviours [22].

2.2.3 Resonant neurons

In some applications it can be useful to enhance neuron sensitivity to the input stim-
ulus timing or phase. For instance a stimulus, independently of its intensity cannot,
to a certain extent, elicit any response if endowed with a given frequency or phase.
Neurons able to show such a pattern of activity are called resonators. The Morris-
Lecar neural model shows a robust tunable resonant behaviour [31, 19] through the
following dynamics:
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V andω are the state variables of the system, I is the input andVi,Vt ,Vk,VCa,gl ,gk,gCa, I
andkf are parameters of the model whose typical values are indicated in Table 2.1.

Table 2.1 Parameters of the Morris-Lecar neurons.

V1 V2 V3 V4 Vt Vk

-1.2 18 2 30 -60 -84

gl gk VCa gCa I kf

2 8 120 4.4 [60.5 61.5][0.687 2.5]

2.3 Synaptic models

Neurons are connected through synapses; the synaptic modeltransforms the spiking
dynamics of the pre-synaptic neuron into a current that excites the post-synaptic one.
The mathematical response of the synapses to a pre-synapticspike can be ruled by
the following equation:

ε(t) =
{

Wt/τ exp(1− t/τ), if t > 0
0 , if t < 0

(2.5)

wheret is the time elapsed since the emitted spike,τ is the time constant andW is
the efficiency of the synapse. This last parameter can be modulated with experience.
This model represents the impulse response of the pre-synaptic neuron; it can be
cumulated if multiple spikes are emitted within the active window, and in relation
to the chosen time constant.

2.3.0.1 Synaptic adaptation through learning

The Spike-timing-dependent-plasticity STDP can reproduce Hebbian learning in bi-
ological neural networks [8, 30]. The algorithm works on thesynaptic weights, mod-
ifying them according to the temporal sequence of occurringspikes. The updating
rule can be expressed by the following formula:

δW =

{

A+exp(δ t/τ+), if δ t < 0
−A−exp(δ t/τ−), if δ t > 0

(2.6)

whereδ t is the time delay between pre- and post-synaptic spikes. In this way the
synapse is reinforced if the pre-synaptic spike happens before the post-synaptic one;
it is weakened in the opposite situation. Parametersτ+ andτ− represent the slope
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of exponential functions, whereas positive constantsA+ andA− represent the max-
imum variation of the synaptic weight.

2.3.1 Synaptic model with facilitation

Short-term synaptic plasticity is characterized by different phenomena and mech-
anisms. Short-term facilitation is one of these mechanismsthat contribute to the
evaluation of the synaptic efficacy. A facilitating dynamics can be modeled with the
following dynamical system [21]:

u̇= (U −u)/F + kδ (t− tn) (2.7)

where U is a constant which the membrane potential tends to, Fis related to the
fading memory and k is a gain factor.δ (t− tn) represents the spike emitted at time
tn by the pre-synaptic neuron.

2.4 The liquid state network

Besides simple networks using spiking neurons, the main structure able to gener-
ate neural dynamics important for the models presented in the following chapters
is the Liquid state network (LSN). This structure was introduced taking, from the
one side, inspiration from specific parts of the insect brain, like mushroom bodies
(MBs; see chapter 1), and on the other side, to already existing architectures and re-
lated algorithms. From the latter side, among the differentkinds of neural networks
used for solving problems like navigation [31], multi-linksystem control [16] and
classification, a lot of interest was devoted to Reservoir computing, which mainly
includes two different approaches: Echo State Network (ESN) and Liquid State Ma-
chines (LSM) [23, 25]. In previous studies non-spiking Recurrent Neural Networks
were used to model the MBs’ memory and learning functions [3]. The core of the
proposed architecture, inspired by the biology of MBs, resembles the LSM architec-
ture. It consists of a large collection of spiking neurons, the so-called liquid layer,
receiving time-varying inputs from external sources as well as recurrent connections
from other nodes of the same layer. The recurrent structure of the network turns the
time-dependent input into spatio-temporal patterns in theneurons. These patterns
are read-out by linear discriminant units. In the last yearsLSM became a reference
point for replicating brain functionalities. However, there is no guaranteed way to
analyse the role of each single neuron activity for the overall network dynamics: the
control over the process is very weak. This apparent drawback is a consequence of
the richness of the dynamics potentially generated within the liquid layer. The side
advantage is that the high dimensional complexity can be concurrently exploited
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through several projections (the read-out maps) to obtain non-linear mappings use-
ful for performing different tasks at the same time.

In details, the architecture used in the following applications consists of a lattice
of Izhikevich’s class I neurons. An important characteristics of this structure is the
local connectivity that is a relevant added value in view of ahardware implementa-
tion of the model. Considering that, as recently found, in insects memory-relevant
neural connections are excitatory [11] the network used in the following models
is composed by excitatory (75%) and inhibitory (25%) neurons. Moreover, in our
model the synaptic weight values are randomly distributed between -0.5 and 0.5
whereas the input weights are fixed to 1. The generation of thesynaptic connec-
tions within the lattice is based on a probability that is a function of the distancedi, j

between the presynaptic (i) and postsynaptic (j) neurons.

Pi j = k∗Ci, j (2.8)

whereCinh,inh = 0.2,Cinh,exc= 0.8,Cexc,inh = 0.4,Cexc,exc= 0.6. and

k= 1 if di, j ≤ 1
k= 0.5 if 1< di, j ≤ 2
k= 0 if di, j > 2

(2.9)

The parametersCi, j have been chosen according to [25]. The distance is calculated
considering the neurons distributed on a regular grid with toroidal boundary condi-
tions. The distancedi, j = 1 is considered for both horizontally and vertically adja-
cent neurons. The time constant of the synaptic model was randomly chosen among
the valuesτ = 2.5, 5, 15 and 25ms. This variability showed to improve the dynam-
ics that can be generated inside the network within the processing time window.
The rich dynamics from the LSN is collected into a readout map, whose weights
are randomly initialized around zero and are subject to learning. The neurons of
the readout map, called Sum neurons, possess a linear activation function and are
massively connected with the LSN.

2.4.1 Learning in the LSN

Inputs are provided to the network as currents that, througha sparse connection,
reach the hidden lattice (i.e. the liquid layer). The multiple read-out maps can be
learned considering the error between the network output, collected through each
Sum neuron for each read-out map, and the target signal.

To enslave the dynamics of the LSN to follow a given target, depending on the
model needs, a supervised learning method can be performed.A simple solution
consists in a batch algorithm, based on the Moore-Penrose Pseudo-inverse comput-
ing method, that determines all the weights needed in the read-out map using all
the available data in a single iteration. If either the dataset is not completely avail-
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able since the beginning, or a more biologically grounded solution is preferred, an
incremental approach can be adopted.

In this case, for a given sum neurons, the weight value at each integration step
depends on the lattice activity and on the error between the current output and the
desired target value. This can be summarized in the following equation:

Ws
i, j(t +1) =Ws

i, j(t)+η ∗Zi, j(t)∗Es(t) (2.10)

whereη is the learning factor,Zi, j (t) is the synaptic output of the neuron(i, j) of
the lattice at timet andEs(t) is the error between the desired target and the neuron
s. Similar results could be obtained cumulating the error in each presented sample
and updating the weights at the end of the presentation. Moreover, to stabilize the
learning process, an error threshold (Eth = 10−8) is imposed to avoid a negligible
weight update for each sample presentation.

2.5 Non-spiking neurons for locomotion

Non-spiking neurons are perfect candidate for reproducingrhythmic movements
that are commonly observed in motor activities. One of the main paradigms of neural
networks tailored to work as locomotion controllers is the Central Pattern Generator
(CPG) [4].
Among the large number of different implementations of the CPG paradigm, the
following architecture will be used in the next chapters.

Fig. 2.1 Neural network scheme: the top layer generates a stable gaitpattern, whereas the bot-
tom layer consists of additional sub-networks generating the specific reference signals for the leg
joints. The network devoted to control a middle leg is reported. The parameters adapted during the
learning process for the middle legs are indicated in red [2].
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The basic cell characterizing the CPG network is described by the following
equations:

{

ẋ1,i =−x1,i +(i + µ + ε)y1,i− s1y2,i + i1
ẋ2,i =−x2,i + s2y1,i +(i + µ− ε)y2,i + i2

(2.11)

with yi = tanh(xi) and the parameters for each cell:µ = 0.23,ε = 0,s1 = s2 = 1, i1 =
i2 = 0, the system will generate a stable limit cycle [8].µ is chosen to approximate
the dynamics to a harmonic (non-spiking) oscillation. A suitable modulation of these
parameters can modify the dynamics of the cell, in order to show also a rhythmic
spiking activity. The CPG network is built by connecting neighbouring cells via
links expressing rotational matricesR(φ), as follows:

ẋi = f (xi , t)+ kΣ j 6=i(R(φi, j)x j − xi) with i, j = 1, · · · ,n (2.12)

where the summation involves all the neuronsj which are nearest neighbours to the
neuroni; n is the total number of cells;f (xi , t) represents the reactive dynamics of
the i-th uncoupled neurons as reported in eq. (2.11) andk is the strength of the con-
nections. The sum of these terms performs diffusion on adjacent cells and induces
phase-locking as a function of rotational matrices [28].

The CPG structure main role is to generate a given stable phase shift among a
number of oscillating cells. Of course an interface to be adapted to the peculiarities
of the robot kinematics. Moreover, once the robot has walked, each leg has basically
two distinct phases: the stance phase (when the leg is on the ground and supports the
weight of the body), and the swing phase (when the leg is lifted-off and recovers).
In the case of aDrosophila-like hexapod simulated robot, the network controlling
one of the middle legs is sketched in Fig. 2.1. The CPG neuron identified with the
labelR2 is connected through rotational matrices with different phases toTop layer
CPG, a network of motor neurons arranged implementing eq.(2.12) in a directed
tree graph, using eq. (2.11) as the constituting neuron model. The blocksH(•) in
Fig. 2.1 are Heaviside functions, used to distinguish, within the limit cycle, between
the stance and swing phases: this allows to associate suitable modulation parameters
to each part of the cycle, depending on the morphology of the leg. The signals are
finally merged to generate the position control command for the coxa, femur and
tibia joints. A detailed discussion on the CPG structure andbehaviours can be found
in a previous study [2].

2.6 Conclusions

In this chapter the ingredients that will be used to develop the neuro-inspired mod-
els are introduced. Different neuron models have been considered including spiking
and non-spiking ones. Synaptic connections are fundamental to develop networks
of neurons. Simple synaptic models have been considered including learning mech-
anisms that modify the synaptic efficiency depending on the pre- and post- synaptic
neuron activity. A first example of complete network was briefly discussed illustrat-
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ing the learning mechanism needed to enslave the internal dynamics using read-out
maps that can be associated to different behavioural responses. Non-spiking neurons
finally presented with particular attention to the models used to develop locomotion
controllers for bio-inspired robots.
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