Chapter 2

Non-linear neuro-inspired circuits and systems:
processing and learning issues

Abstract In this chapter the main elements useful for the design aalizegion of
the neural architectures reported in the following chaptetl be presented. Con-
sidering spiking and non-spiking neurons, the models usedfplementing each
of them, the synaptic models, the basic learning and plgstatgorithms and the
network architectures will be introduced and analysed. Réweelements that led
to their selection and application in the developed nenspired systems will be
discussed briefly.

2.1 Introduction

To model neuro-inspired circuits and systems, we need ldsaks that can be
combined with each other, to develop complex networks. énftilowing chap-
ters, we will present neuro-inspired models designed teestalsks that range from
the control of locomotion to the learning of spatial memong d&ehavioural se-
quences. Depending on the peculiar characteristics of tuelied system, different
basic processing units were considered. In the followitjees, all the ingredients
needed will be introduced and discussed.

As far as the neural models are considered, we can identifyetementary pro-
cessing units: spiking and non-spiking neurons. Spikingrole models are used
to develop bio-inspired neural networks that try to mimie ihformation trans-
fer that occurs in the brain which is mainly based on spikingnés. The use of
spikes improves the robustness of the network to noise Becdne spike can be
more easily propagated through neurons even even undeigoalgo-noise condi-
tions. Networks based on spiking neurons can perform @eiffetypes of computa-
tions from classification to working-memory formation aedjgence discrimination
[1, 32, 17]. To connect spiking neurons with each othergedéht synaptic models
can be considered [12, 27]. The synaptic transfer functaomlze either a simple
weight or a more complex system with one or several statabias. Furthermore,
the parameters of the synaptic model can be subject to arggonocess because
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it is important to store the acquired knowledge coming fromenvironment in the
neural structure [6, 9].

Even if the spiking activity is the most common way to exchanmgormation
between in-vivo neurons, there are also examples of nddrgpneurons that reg-
ulate through slow dynamics specific rhythmic activitiée lin the MolluskClione
mollusk [10]. They are also common in insect nervous systemaénly to regulate
motor activity [13] [29]. These neurons work like pulse gexters and can also
maintain a plateau when needed.

Even in presence of spiking neurons, there is the possilbdisum the activity of
a group of spiking/bursting neurons using higher levelgatbrs as for instance the
mean firing rate that is a quantitative variable able to iatfiche level of activity
in a population of neurons. This strategy, exploited in s@v&orks, is part of the
so-calledneural fieldapproach [18, 24].

The design of the basic blocks, together with the topologheheural networks
are relevant aspects to be addressed also in view of a seftveadware implemen-
tation of the architectures. Several solutions could beriakto account to develop
neuromorphic circuits [20, 34, 14]: microcontrollers, FRGPAA, integrated cir-
cuits and GPU accelerators are some of the potential deiaesan be successfully
considered.

2.2 Spiking neural models

Among the different models available for modelling spikirgurons, we considered
different options: the leaky integrate-and-fire (LIF), tabikevich’s model and the
Morris-Lecar resonant neuron.

2.2.1 Leaky integrate-and-fire model

The leaky integrate-and-fire model is one of the first comjirtal models applied
to develop neuro-inspired networks [33][15]. Its main attege consists of the sim-
plicity of the equations. In fact, the system works like ekieategrator. The time
evolution of the membrane potenthd}(t) of each neuron is described by the fol-
lowing equation:

CinVin(t) = =g (Vin(t) — VL) — Isyn(t) (2.1)

whereCy, is the membrane capacitance (typical values adopted &e1FOfor
excitatory cells and 0.2 nF for inhibitory cellgj; is the leak conductance (0.02%
for excitatory cells and 0.Q2S for inhibitory cells), and/, is the resting potential
(-70 mV for both excitatory and inhibitory cells). When thembrane potential of a
neuron reaches a threshold (i.e. -50 mV) a spike occurs @nthémbrane potential
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returns to a reset potential (i.e. -60 mV). The last tégg(t) represents the total
synaptic input current of the cell.

2.2.2 lzhikevich’s neural model

Izhikevich’s neural model, proposed in [22], is well knownthe literature and
offers many advantages from the computational point of viedve model is repre-
sented by the following differential equations:

v=0.042+5v+140—u+1
(= a(bv—u) (2:2)

with the spike-resetting

V<C

if v>0.03 then{w—u—i—d

(2.3)

wherev is the membrane potential of the neuraris a recovery variable andis
the synaptic current. The values assigned to the paranmetersandd will vary
as they are depending on the particular neural structuegsati be introduced.
Varying the neuron parameters we can obtain several difféehaviours [22].

2.2.3 Resonant neurons

In some applications it can be useful to enhance neurontaéygio the input stim-
ulus timing or phase. For instance a stimulus, indepengehtts intensity cannot,
to a certain extent, elicit any response if endowed with amivequency or phase.
Neurons able to show such a pattern of activity are calledn@&®srs. The Morris-
Lecar neural model shows a robust tunable resonant behajd@y19] through the
following dynamics:

+0caMe (V) (Vca— V)] (2.4)

{V =ki[l +a (M —V) +gw(Vk—V)+
W =ke[A(V)(wn(V) - w)]

where
1 \VAYA
m;o(V)fz(l-i—tanh v )
1 V-V,
wm(V)_z(lthanh Vi )
AV) = T coshy V3

3 A/
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V andw are the state variables of the system, | is the inpudand, Vi, Vca, 91, Gk, Oca, |

andk;s are parameters of the model whose typical values are irdi¢atTable 2.1.

Table 2.1 Parameters of the Morris-Lecar neurons.

vi (wlvs Vel W Vi
-1.2]18| 2 |30 -60 -84
g |9|Vca|dca I Ky
2 | 8{120(4.4][60.5 61.5][0.687 2.5

2.3 Synaptic models

Neurons are connected through synapses; the synaptic tnaalgflorms the spiking

dynamics of the pre-synaptic neuron into a current thategthe post-synaptic one.
The mathematical response of the synapses to a pre-syspjiiccan be ruled by

the following equation:

g(t)_{ Wt/texp(l—t/1), if t>0

0. if t<0 (2:5)

wheret is the time elapsed since the emitted spikés the time constant and is
the efficiency of the synapse. This last parameter can be latedwith experience.
This model represents the impulse response of the pre-8gmaguron; it can be
cumulated if multiple spikes are emitted within the activiegow, and in relation
to the chosen time constant.

2.3.0.1 Synaptic adaptation through learning

The Spike-timing-dependent-plasticity STDP can repreddebbian learning in bi-

ological neural networks [8, 30]. The algorithm works onglreaptic weights, mod-

ifying them according to the temporal sequence of occurspiges. The updating
rule can be expressed by the following formula:

| Afexp(dt/tt), if dt<O

oW = { _A exp(Bt/T ), if 8t>0 (2.6)

wheredt is the time delay between pre- and post-synaptic spikesisviay the
synapse is reinforced if the pre-synaptic spike happerm&édie post-synaptic one;
it is weakened in the opposite situation. Parameterand7_ represent the slope
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of exponential functions, whereas positive constantandA_ represent the max-
imum variation of the synaptic weight.

2.3.1 Synaptic model with facilitation

Short-term synaptic plasticity is characterized by déf@grphenomena and mech-
anisms. Short-term facilitation is one of these mechanisras contribute to the
evaluation of the synaptic efficacy. A facilitating dynas@an be modeled with the
following dynamical system [21]:

U= (U —u)/F+kd(t—tn) 2.7)

where U is a constant which the membrane potential tendsitordfated to the
fading memory and k is a gain fact@(t —t,) represents the spike emitted at time
tn by the pre-synaptic neuron.

2.4 The liquid state network

Besides simple networks using spiking neurons, the mairctsire able to gener-
ate neural dynamics important for the models presentedarialfiowing chapters
is the Liquid state network (LSN). This structure was introeld taking, from the
one side, inspiration from specific parts of the insect hrille mushroom bodies
(MBs; see chapter 1), and on the other side, to already egiatichitectures and re-
lated algorithms. From the latter side, among the diffekémds of neural networks
used for solving problems like navigation [31], multi-liskstem control [16] and
classification, a lot of interest was devoted to Reservanmating, which mainly
includes two different approaches: Echo State Network (8 Liquid State Ma-
chines (LSM) [23, 25]. In previous studies non-spiking Reent Neural Networks
were used to model the MBs’ memory and learning functionsTBE core of the
proposed architecture, inspired by the biology of MBs, ndsles the LSM architec-
ture. It consists of a large collection of spiking neurohg, $o-called liquid layer,
receiving time-varying inputs from external sources ad ag&ftecurrent connections
from other nodes of the same layer. The recurrent strucfitteemetwork turns the
time-dependent input into spatio-temporal patterns inrtbgrons. These patterns
are read-out by linear discriminant units. In the last yé&® became a reference
point for replicating brain functionalities. However, tees no guaranteed way to
analyse the role of each single neuron activity for the di/eedwork dynamics: the
control over the process is very weak. This apparent dralise consequence of
the richness of the dynamics potentially generated withénliquid layer. The side
advantage is that the high dimensional complexity can bewwantly exploited
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through several projections (the read-out maps) to obtimlimear mappings use-
ful for performing different tasks at the same time.

In details, the architecture used in the following applmas consists of a lattice
of I1zhikevich’s class | neurons. An important charactésssbf this structure is the
local connectivity that is a relevant added value in view bBadware implementa-
tion of the model. Considering that, as recently found, settts memory-relevant
neural connections are excitatory [11] the network usedéfollowing models
is composed by excitatory (75%) and inhibitory (25%) nesgtdvioreover, in our
model the synaptic weight values are randomly distributetivben -0.5 and 0.5
whereas the input weights are fixed to 1. The generation ofyheptic connec-
tions within the lattice is based on a probability that is adtion of the distance
between the presynaptig @nd postsynapticj§ neurons.

Rj =kxGCij (2.8)
whereCinn,inh = 0.2, Cinh,exc = 0.8, Cexcinh = 0.4, Cexgexc = 0.6. and

k=1if di,jgl
k=05if 1<djj<2 (2.9)
k=0if dj>2

The parameterS; ; have been chosen according to [25]. The distance is cadclilat
considering the neurons distributed on a regular grid vatbitdal boundary condi-
tions. The distance; ; = 1 is considered for both horizontally and vertically adja-
cent neurons. The time constant of the synaptic model watoraly chosen among
the valuest = 2.5, 5, 15 and 2Bs This variability showed to improve the dynam-
ics that can be generated inside the network within the giog time window.
The rich dynamics from the LSN is collected into a readout nvelpose weights
are randomly initialized around zero and are subject toniegr The neurons of
the readout map, called Sum neurons, possess a lineartactifanction and are
massively connected with the LSN.

2.4.1 Learning in the LSN

Inputs are provided to the network as currents that, thraugbarse connection,
reach the hidden lattice (i.e. the liquid layer). The mudtipead-out maps can be
learned considering the error between the network outplieated through each
Sum neuron for each read-out map, and the target signal.

To enslave the dynamics of the LSN to follow a given targepetheling on the
model needs, a supervised learning method can be perfodnsithple solution
consists in a batch algorithm, based on the Moore-Penr@elBsnverse comput-
ing method, that determines all the weights needed in the-oea map using all
the available data in a single iteration. If either the dettégs not completely avail-
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able since the beginning, or a more biologically groundédtsm is preferred, an
incremental approach can be adopted.

In this case, for a given sum neursnthe weight value at each integration step
depends on the lattice activity and on the error betweenudh@t output and the
desired target value. This can be summarized in the follgwouation:

WS (t+ 1) = WS, (t) + 17 Zij(t) < ES(t) (2.10)

wherern is the learning factoiZ j(t) is the synaptic output of the neurdn j) of

the lattice at time andES(t) is the error between the desired target and the neuron
s. Similar results could be obtained cumulating the erroraohepresented sample
and updating the weights at the end of the presentation. dereto stabilize the
learning process, an error thresholii,(= 10~8) is imposed to avoid a negligible
weight update for each sample presentation.

2.5 Non-spiking neurons for locomotion

Non-spiking neurons are perfect candidate for reprodudiyghmic movements
that are commonly observed in motor activities. One of theaparadigms of neural
networks tailored to work as locomotion controllers is then€al Pattern Generator
(CPG) [4].

Among the large number of different implementations of tHeQCparadigm, the
following architecture will be used in the next chapters.

Bottom Layer
Motor Neurons:

_[os®) —sin
W) Blioe ot

K1:=K2:=0.26
K1;=0.05.
K2,=0.225
K1,=0.07
81,=0.05
82,=0.125
81,2007
Ie=le=l=0
K=11=0 Subject to
learning

Fig. 2.1 Neural network scheme: the top layer generates a stablgajaérn, whereas the bot-
tom layer consists of additional sub-networks generatiregspecific reference signals for the leg
joints. The network devoted to control a middle leg is repdrfThe parameters adapted during the
learning process for the middle legs are indicated in red [2]
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The basic cell characterizing the CPG network is describethb following
equations:
{Xl,i ==X+ (i+ U+ €)y1i —S1y2j +i1 (2.11)
Xoi = —Xoj+Sy1i+ (Ii+H— €)Yz +i2 '

with y; =tanh(x;) and the parameters for each celk=0.23,e =0,y =5 =1,i1 =

i = 0, the system will generate a stable limit cycle [8]is chosen to approximate
the dynamics to a harmonic (non-spiking) oscillation. Aablie modulation of these
parameters can modify the dynamics of the cell, in order tmwsalso a rhythmic
spiking activity. The CPG network is built by connecting gi@bouring cells via
links expressing rotational matricé®( ), as follows:

% = f(x,t) +KZj4(R(@,j)xj —x) withi,j =1,---,n (2.12)

where the summation involves all the neurgnshich are nearest neighbours to the
neuroni; nis the total number of cells(x,t) represents the reactive dynamics of
the i-th uncoupled neurons as reported in eq. (2.11kdadhe strength of the con-
nections. The sum of these terms performs diffusion on adjfacells and induces
phase-locking as a function of rotational matrices [28].

The CPG structure main role is to generate a given stableepdtat among a
number of oscillating cells. Of course an interface to bepéethto the peculiarities
of the robot kinematics. Moreover, once the robot has walkadh leg has basically
two distinct phases: the stance phase (when the leg is omdbhedand supports the
weight of the body), and the swing phase (when the leg igllitif and recovers).
In the case of @rosophilalike hexapod simulated robot, the network controlling
one of the middle legs is sketched in Fig. 2.1. The CPG newtentified with the
labelR2 is connected through rotational matrices with differémages talop layer
CPG, a network of motor neurons arranged implementing eq.jdrl2 directed
tree graph, using eq. (2.11) as the constituting neuron mdtle blocksH (e) in
Fig. 2.1 are Heaviside functions, used to distinguish, withe limit cycle, between
the stance and swing phases: this allows to associate leuitallulation parameters
to each part of the cycle, depending on the morphology ofégeThe signals are
finally merged to generate the position control commandHerdoxa, femur and
tibia joints. A detailed discussion on the CPG structurelagtthviours can be found
in a previous study [2].

2.6 Conclusions

In this chapter the ingredients that will be used to devehgprteuro-inspired mod-
els are introduced. Different neuron models have been dereil including spiking
and non-spiking ones. Synaptic connections are fundamtenteevelop networks
of neurons. Simple synaptic models have been considerkaling learning mech-
anisms that modify the synaptic efficiency depending on tiee gnd post- synaptic
neuron activity. A first example of complete network was flyidiscussed illustrat-
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ing the learning mechanism needed to enslave the intermalrdics using read-out
maps that can be associated to different behavioural resgoNon-spiking neurons
finally presented with particular attention to the modelsdi® develop locomotion
controllers for bio-inspired robots.
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