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Abstract— In this paper an insect-inspired body size learning
algorithm is adopted in a humanoid robot and a control
system, mainly developed with spiking neurons, is proposed.
It implements an evaluation of distances by using the typical
parallax method performed by different insect species, such as
Drosophila melanogaster. A Darwin-OP robot was used as test-
bed to demonstrate the potential application of the learning
method on a humanoid structure. The robot, equipped with a
hand extension, was free to move in an environment to discover
objects. As consequence, it was able to learn, using an operant
conditioning, which objects can be reached, via the estimation
of their distance on varying the length of the equipped tool.
The learning scheme was tested both in a dynamical simulation
environment and with the Darwin-OP robot.

I. INTRODUCTION

THe research field in robotics is in continuous evo-
lution and there are strong relations with the new

achievements in understanding living beings from mammals
to insects and plants. The multisensory representation of
our body is a key element in the development of different
higher level cognitive functions [1]. The capability to acquire
knowledge about the peripersonal space is an important
skill needed by autonomous systems to interact with objects
in unstructured environments [2]. The body model can be
defined as a sensorimotor representation of the body that
can be used to accomplish selected tasks [3]. The body size
learning is therefore the ability, shown by living beings, to
learn the relations between objects and its own body. For
instance, the system can acquire knowledge about either the
reachability or the traversability of a point of interest by
analyzing the effects of its own motion on the environment.
This capability is directly connected to the vision system and
is related to the acquisition of parallax motion.

In literature there are several studies that investigate
the presence of this form of learning on different animal
species including: pigeon and praying mantis [4], Drosophila
melanogaster [5] and mammals like monkeys [6] and hu-
mans [7]. In a previous work we investigated the body size
formation in insects with particular attention to Drosophila
melanogaster and we developed a computational model
inspired to the main neural centres devoted to the acquisition
and formation of this knowledge [8]. That preliminary work
is here extended by reformulating the developed model,
including different processing layers and re-adapting the
learning system to a humanoid robot, demonstrating that
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the proposed strategy can be applied for different bodies
and scenarios. In particular, the considered task consists in
learning the correct distance from which the robot is able to
touch an object of interest using its arm. The robot can learn
different body size models depending on the presence of a
tool (e.g., an arm extension) that can change its reachability
space. It may be worth mentioning that the possibility to
learn its own reachability space (i.e., workspace) is an inter-
esting ability to autonomously build internal representations
arising from experience. Moreover, being a difficult task,
learning techniques give a promising approach compared to
the analytical and geometric methods. In latest years there
has been an increasing attention on computational neuro-
science methods focused on formulating bio-inspired models,
algorithms and related structures such as spiking neural
networks. These models enhanced the biological realism of
control systems, alongside the possibility to use spatial and
temporal information in the processes of computing, just as
real neurons do. Indeed, we propose a bio-inspired solution
by adapting a well-tested and investigated control system [8].
The control architecture is based on a spiking neural net-
work developed to implement a distance estimation through
parallax motion. The network consists of an ensemble of
neurons able to process the visual information acquired by
the robot in terms of angular positions and to determine
a winning neuron that is representative of the estimated
distance between the robot and the target of interest. The
body size model is therefore conceived by the system using
a learning process based on a threshold adaptation rule.
This mechanism induces hyperpolarization or depolarization
into the output neuron, to make it responsive only to the
correct distances according to the knowledge acquired from
its experience. A similar learning mechanism was already
successfully applied in a different context, to neurons devoted
to visual processing with the result to induce specialization
in a group of robots [9], [10]. The threshold updating rule
was determined using the data stored in a memory where
events related to the visual sensory system were collected.
Differently, in this work, the threshold adaptation rule is
applied using the information acquired by the robot while
performing actions in the environment in order to acquire the
corresponding reward or punishment, following an operant
conditioning schema [11].

The learning process was performed using a virtual sim-
ulation environment and subsequently, the learned controller
was embedded on the Darwin-OP robot for a testing on a
real arena. This humanoid robot was already successfully
adopted, as a simple and efficient testbed, to evaluate a
push recovery controller developed through reinforcement



Fig. 1. Block scheme showing the different elements considered while
modeling the CX. The visual system transfers information to the PB
structure involved in body size learning. The FB participates to visual
learning and orientation control whereas the EB is responsible for the
formation of spatial memory.

learning [12]. Herein, we are endowing the robot with a
controller for visuo-motor coordination based on a learned
body size model, which allows the robot to catch balls
randomly distributed in the environment.

II. BIOLOGICAL BACKGROUND

The learning processes devoted to guide the formation of
a body model involve an adaptive calibration of the propri-
oceptive information on the basis of which a representation
of the own body can be created. This calibration is obtained
by detecting the relations between the self-produced actions
and the induced sensory information. The importance of this
form of learning is demonstrated by the fact that even insects
like Drosophila melanogaster with a number of neurons in
the central brain ' 105 (compared with ' 1011 in humans)
possess this skill. The learning process requires the presence
of visual feedback through parallax motion generated by self-
motion for the body size formation [5]. In gap climbing
scenarios with flies characterized by different body sizes, the
number of unsuccessful attempts is maximum at the largest
just surmountable gap width. This evidence can be explained
only with the presence of a body size model available to
be used for behavioral decisions otherwise the number of
attempts should be the same independently from the gap
width. The presence of parallax motion, as a fundamental
stimulus for the formation of the body size model, was
demonstrated by hatching flies in the dark. Under these
conditions, flies are not able to develop a body model and
the body size is no longer taken into account for behavioural
decisions [13].

The central complex (CX) is a crucial neural structure for
the body size knowledge formation [14], [15]. A plausible
model for CX consists of a distributed structure, spatially
associated to the visual field, able to acquire and process
spatial information in terms of orientation angle between
relevant targets and the insect.

In Fig. 1 the different elements identified in this neural
assembly are reported. The visual system acquires informa-
tion on relevant objects in the scene, transferring the where
and what to the Protocerebral bridge (PB) and the Fanshaped

Fig. 2. Procedure for the acquisition of the parallax motion in the humanoid
robot.

body (FB) that are responsible for heading control and visual
learning, whereas the Ellipsoid body (EB) is involved in
spatial memory formation. The designed model, initially
developed for direction control, spatial memory and other
capabilities [16], [17], was extended to include body-size
learning processes.

III. BODY SIZE MODEL

Operatively, to create a body size model we need a
distance estimation procedure based on parallax motion. Fig.
2 shows the movements performed by the robot to acquire the
α and β angles needed for the distance estimation. Although
in Drosophila melanogaster the parallax motion is acquired
when walking in the environment; on the humanoid robot, a
sufficiently reliable straight forward trajectory between two
consecutive sensory acquisitions cannot be guaranteed due
to a series of stability problems, thus, we adapted a different
procedure. To achieve the same result, the robot creates the
displacement needed for the parallax motion moving the head
position but, maintaining a stationary position of the torso
and shifting the considered angle from the azimuth to the
altitude.

The initial robot position is marked as t1 and the first angle
between the robot head and the target position is evaluated.
After the robot stands up, the new angular position t2 is
evaluated and the distance is computed. If a mathematical
formulation is adopted, the following formula provides the
distance calculation:

k =
D

E
=

sin(α)

sin(β − α)
(1)

where α and β are the angles measured respectively at
time t1 and time t2 as reported in Fig. 2. However, brains
do not use this mathematical asset, so, being helped from
the particular configuration of the Drosophila CX, a neural
network has been designed in order to be able to estimate
the distance between the robot and the target (i.e., D). It is
important to notice that the distance will be evaluated using
as measurement unit the distance between the two angular
acquisitions (i.e., E). This method has a solid biological
background in fly larva.



Fig. 3. Block schema of the control structure devoted to learn correlations
between the robot body size and the objects in the environment. The robot
generates parallax motion by moving the head from one position to another.
A suitable visual system permits to detect objects of interest in order to
identify the two different angles of view as result of robot head movement,
as shown in Fig. 2. The model through a series of processing blocks, is
able to estimate the distance from the object. Hence, an output neuron fires
if the object is reachable (i.e., its estimated distance is below a threshold).
A reward signal guides the learning mechanism according to the success or
failure in taking an identified object.

A schema of the neural architecture is reported in Fig. 3.
The network is composed of a series of layers developed
using spiking neurons. At time t1, afferent input from the
visual layer (i.e., dotted arrow in Fig. 3) inhibits all the
neurons of the first layer of the network with a synaptic
gain equal to the sinusoidal function of its absolute angular
position sin(α), shown in the picture as a continuous line.
This mechanism is not learned, it is considered pre-wired
in the neural structures responsible for the topographical
mapping of the visual input in the neural centres devoted
to the processing.

At time t2 the neuron in the visual network excites each
neuron of the first layer with a current that is obtained mul-
tiplying the sin of the difference between the two perceived
angular positions sin(β−α) and an incremental gain Gi for
i = 1, ..N , where N represents the number of neurons used
in this layer (in these simulations we selected N = 90).

The array of gains was conveniently tuned to match with
the second input: excitatory inputs should compensate the
inhibitory ones to allow the neuron to fire. The value for
these gains was chosen following a simple linear distribution
that depends on the position of neuron i:

Gi = 0.05 ∗ (i− 1) + 1 (2)

This solution allows to discriminate distances from 1
to 5.45 times the distance E travelled between the two
angular acquisitions (see Fig. 2), with a precision that linearly
increases with the number of neurons.

The first and second layers of spiking neurons have
been realized using the Izhichevich’s class II neuron model
[18], selected for the computational efficiency and dynam-
ical properties. They are connected with direct excitatory
synapses and lateral inhibitory ones. All assigned weights
are set to Wexc = 2 and Winh = −1, except for the last

neuron in the second layer that receives from the (N − 1)-
th neuron of the first layer an inhibitory synaptic connection
with a weight of Winh = −3 to solve balancing problems on
the boundary of the network. Adjacent neurons in the second
layer are also connected using mutual inhibitory synapses
with the same weighs.

This network configuration allows to obtain the following
behaviour: depending on the inputs, the first layer of neurons
will be divided into two groups in which the first one will not
be able to spike due to the low excitatory input gain, whereas
the last part of the array will be sufficiently excited and
thus will fire. This behavioural activity will be transferred to
the second layer where a winner-takes-all topology has been
implemented: the neuron corresponding to the boundary of
activity of the first layer will be the only one able to fire.
Thereafter, this information is transferred to the final output
neuron that will receive an input current proportional to the
index of the firing neurons in the previous layer.

The last part of the network consists of a spiking neuron,
whose spiking activity is correlated to the action to be
performed by the robot. Namely, only if the output neuron
fires, (meaning that the detected object is reachable) the
robot starts a catching action. The output neuron is subject
to a learning process based on threshold adaptation. When
the system receives a reward signal, the threshold level is
modified obtaining either a facilitation or a reduction of
the spiking response for the output neuron. The threshold
adaptation process can be implemented through a voltage-
dependent current (IA) formalized as an additional input to
the decision neuron, expressed as IA = -gA∗Vth. The system
is initially facilitated in trying to perform the catching action
by initializing the threshold to low numbers and choosing
gA = 1.

The final processing layer can be therefore considered as a
gate to determine if an object is reachable or not depending
on its estimated distance. The correct decision is therefore
learned through an operant conditioning method.

Whenever the robot, guided by the output neuron firing,
performs a successful action, this generates a reward used
to modify the output neuron threshold depending on the
matching between the reinforcement signal and the internal
prediction. If the outcome for the selected object is reachable
(unreachable) but the performed attempt is unsuccessful,
the threshold is increased (decreased) to hyperpolarize (de-
polarize) the output neuron. If the prediction is correct,
the threshold remains unchanged. The learning process is
summarized in the following equations:

Vth =

 Vth + ∆Vthfor incorrect attempt
Vth for correct prediction
Vth −∆Vthfor incorrect give up

(3)

The application of Eq. 3 allows the adaptation of the
output neuron firing as a function of the incorrect behaviours
performed by the robot.
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Fig. 4. Simulation environment used to evaluate the body size learning on
the Darwin-OP robot. (a) The robot can detect, using the embedded camera,
the presence of red balls (i.e., targets) that randomly appear in the arena
(b).

IV. SIMULATION RESULTS

Darwin-OP which stands for Dynamic Anthropomor-
phic Robot with Intelligence-Open Platform is a miniature-
humanoid robot platform with an advanced computational
power. It is equipped with multiple sensors and actuated
with smart servomotors. Darwin-OP has twenty degrees of
freedom each one controlled by a Dynamixel MX-28T servo
motor [19].

To perform the simulations in order to validate and evalu-
ate the capabilities of the control architecture modified for the
Darwin-OP robot, the Webots dynamic simulation environ-
ment was considered. Webots is a development environment
used to model, program and simulate mobile robots [20].

The adopted simulation set-up takes into account the
Darwin-OP humanoid robot walking in an arena where
targets of interest (i.e., red balls) can appear in different
positions. The simulated robot, equipped with a camera, can
detect the presence of a target and proceeds to a parallax
estimation of the reachability for the selected object. Due
to the orientation errors accumulated by the robot during
walking, the parallax angles were acquired by changing the
robot posture from up to down as discussed in Section III.

The simulation scenario is shown in Fig. 4 where the
humanoid robot is walking, guided by the vision system,
trying to catch the balls that randomly appear in the arena.

The spiking network processes the information acquired
by the vision system and the activity of the output neuron
controls the consequent robot behaviour. Thus, if the output
neuron fires, the robot tries to catch the ball extending its
arms, otherwise an approaching movement is performed and
a new acquisition occurs. At the beginning of the learning
phase, the output neuron threshold is equal to zero and the
neuron is active independently from the parallax estimation.
This situation is therefore translated in a continuous execu-
tion of the catching behaviour. The robot needs to try this
action to evaluate the consequences and to tune its body
model accordingly. The success of the procedure is detected
analysing if the ball position changes after the catching
action. The robot is initially equipped with a tool, an arm
extension that changes its reachability space: the length of
the tool is about 12cm obtaining a total arm extension that
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Fig. 5. (a) Trajectory followed by the robot during a learning phase. The
robot approaches the visible target performing a series of catching actions
whose outcome will affect the threshold update. When a ball is caught a
new one randomly appears, the sequence of generated balls is labelled with
the order of appearance. (b) The evolution of the output neuron threshold
during the 40 trials executed while catching ten red balls. The threshold
stabilizes around the value Vth = 1.5.

increases from 22cm to 34cm. This tool will be taken into
account by the learning process that will find the suitable
threshold vth associated to this robot configuration.

An example of the robot behaviour during a learning phase
is reported in Fig. 5, when the arm extension is equipped.

To avoid useless trials, if the area of the bounding box
around the red ball is below a certain size, the object is
considered too far, and an approaching behaviour is imple-
mented. The robot located on a starting position, looks for
targets in the arena and detects the red ball labelled with
the number 1. Due to the very small area of the detected
ball, an approaching behaviour is performed and the robot
moves five steps towards the target. After this action the
robot evaluates the parallax motion and follows the output
neuron commands that considers as reachable the ball. The
catching action was not successful therefore a firing and not
taken event occurs that updates the output neuron threshold
with an increment to calibrate the body size model. After
a series of unsuccessful actions, the robot finally succeed
in catching the ball. The caught ball disappears and a new



Fig. 6. Sequence of actions performed by the robot during a catching
trial: (a) the ball is identified by the vision system and its elevation angle is
acquired; (b) the robot modifies its posture (i. e. crouched down) to acquire
the new elevation angle of the target ball; (c) the robot tries to catch the ball
extending its arms; (d) the arm touching the ball moves the target position
acquired from the camera and a rewarding signal is generated.

one is refreshed in a random position. The robot, trial by
trial, learns and after ten balls, for a total of 40 trials the
robot succeeds in learning its body size and the threshold is
stabilized around the value of 1.5 as reported in Fig. 5 (b).

Fig. 6 shows the sequences of actions performed when
the robot successfully catches a ball: the α and β angles are
acquired (Fig. 6 (a) and (b)), the robot performs a catching
behaviour extending its arms toward the ball (Fig. 6 (c)), the
camera detects a change in the ball position rewarding the
robot for the successful action (Fig. 6 (d)).

The behaviour performed by the simulated robot to catch
the same target, starting from three different positions, is
reported in Fig. 7. The Not taken event that guides the
learning of the vth (see Fig. 7 (a)) disappears when the output
threshold reaches the value of vth = 1.5 (Fig. 7 (b)).

To evaluate the learning capability of the developed archi-
tecture, the behaviour of the robot has been also evaluated
by removing the tools from the arms, with a significant
reduction of the reachability space. The learning process,
performed using the same arena previously introduced, was
accomplished using the same sequence of ball presentation
used with the arm extension. The robot trajectory marked
with the events related to the performed behaviours is shown
in Fig. 8 (a). The time evolution of the output neuron
threshold is reported in Fig. 8 (b), where a different steady
state solution is obtained through the learning process, if
compared with the results reported in Fig. 5 (b). The
information about the body size of the robot in terms of
reachability space of the arm is embedded within the output
neuron threshold value that in presence of the arm extension
converges towards vth = 1.5 whereas without the tool it
assesses around vth = 1.9.

The developed controller was also evaluated in practice,
using the Darwin-OP robot. A series of experiments were
performed using the body size models tuned in the dynamical
simulation environment and tested with the robot in an arena

(a) (b)

Fig. 7. Behaviour of the robot trying to catch the same target from three
different starting positions. Trajectories followed and behaviours generated
during the learning phase (a) and when the threshold reached its steady state
value (b).

with a red ball used as target. The obtained results are
summarized in Fig. 9 where the behaviours performed by
the robot with and without the arm extension are shown
for comparison. A visual filter able to detect red objects
in the scene was used to identify the position of the target.
Interestingly, the sequence of actions performed by the robot
are equivalent to those obtained in simulation and the learned
model in both cases is able to find the correct position from
which the ball can be touched extending the arm.

V. CONCLUSION

This work focuses on the development of a suitable
insect-inspired neural network for body size learning. For
autonomous robotic systems that need to versatile adapt in
complex scenarios, there is a growing interest for techniques
allowing a robot to automatically learn its own body schema
with only minimal human intervention. Using the experimen-
tally available results, a neural model is here proposed based
on the mechanisms used by flies to learn their body capa-
bilities. Although some computationally-oriented hypotheses
have been taken into account, they do not compromise the
biological coherence of the model. The architecture has been
applied both in simulation and in real with the Darwin-OP
humanoid robot in a scenario where the robot should learn,
through a reward based system, the reachable/unreachable
space in the arena. An important point to be focused is
that the network is application-independent, in the sense
that body size learning is an intrinsic property of the living
being and the network should be able to assume the correct
behaviour no matter the robot on which it’s implemented
and the action to execute. The model of the neural network
is a complete working prototype, whose functionalities have
been tested in a simulated environment with good results,
and preliminary experiments were developed on the real
robot. A natural extension of the developed model will be the
introduction of multiple output neurons that can be separately
tuned in order to represent different aspects. For instance, it
can be associated to either the reachability of an object within
a given number of steps or the possibility to pass through a
door depending on its own body occupancy.
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Fig. 8. (a) Trajectory followed by the robot during a learning phase when
the arm extension was removed. (b) The evolution of the output neuron
threshold during the 50 trials executed while catching ten red balls. The
threshold stabilizes around the value vth = 1.9.
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