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DIEEI - University of Catania

viale A. Doria 6 Catania, Italy
Email: [parena, lpatane]@dieei.unict.it

Abstract—In this paper an insect brain-inspired neural pro-
cessing architecture was developed to be applied on board
of a bio-robot for solving feature-to-action tasks. The system,
accounting on visual features, is able to solve a classification
problems using a spatial temporal approach that is typical of
bio-inspired neural architectures. The proposed neural structure,
taking inspiration from a specific neuropile of the insect brain,
called mushroom bodies, is applied to solve tasks shown in insect
experiments where non-elemental learning strategies are taken
into account. An important peculiarity of the hidden processing
layer of the proposed multi-layer architecture is the local, CNN-
like connectivity among the spiking neurons, opening the way for
an hardware implementation on neuromorphic chips.

I. INTRODUCTION

Classification is one of the most important tasks performed
by living beings while processing information coming from
the environment. Current researches in Robotics are focused
on the development of autonomous systems able to solve
tasks such as object recognition and decision making in
structured and unstructured environments. In previous works
we developed an insect-inspired architecture to model several
different behaviours shown by insects and, in particular, by
Drosophila melanogaster that is a perfect model organism [1],
[2], [3]. One of the first model for olfactory learning, inspired
by the Mushroom Bodies (MBs), was introduced in [4]. This
model focused on an associative leaning-based structure where
the input-driven MBs activity is associated to a rewarding or
a punishing event. In [5] spatio-temporal inputs were encoded
into the neural structure that produced spatial patterns. This
sparse activity can be associated to different classes using a
reinforcement learning approach, obtaining a structure similar
to a support vector machine [6]. More recent works focalized
on the clustering capabilities of an MB-inspired network,
proposing a spiking neural network for the classification of
multivariate data: however, here an additional processing stage
using a neural gas architecture was requested[7]. With respect
to this structure, in this work we propose a much simpler
multi-layers network of spiking neurons that takes inspiration
by the processing flow within the MBs in the fruit fly and
avoids using Neural gas classifiers which make the classi-
fication task much easier in [7]. The architecture here used
represents a part of a more complex structure that has been
previously introduced in [3], [8]. In this work the classification
capabilities of the proposed neural architecture in solving
problems of non-elemental learning, that were demonstrated

to be affordable also by insects [9], are evaluated. When
modelling complex neural activities to generate time-varying
signals, two possible strategies can be followed: the use
of enslaved chaotic dynamics [10] and the exploitation of
Reservoir Computation by extracting the needed dynamics
using read-out maps [11], [12], [13]. Focusing our attention
on the second approach, our computational model is here used
as a neural controller for a fly-inspired simulated walking
robot facing with different scenarios inspired by experiments
performed with honeybees [14], [15]. These insects are able
to extract visual features from objects to perform decision
making processes while negotiating a complex environment.
Several different experiments were performed to evaluate
the capabilities of insects to respond to stimuli through a
decision making process. For instance Giurfa and co-workers
trained honeybees to fly into a Y-maze to evaluate when
different learning strategies, as elemental or configural visual
discrimination, occur on the basis of the number of trials [16].
Honeybees can learn visual stimuli during food search and can
solve visual discrimination problems that contain ambiguity at
the feature level. In particular, in [15], three different visual
discriminations were considered: positive patterning; negative
patterning and biconditional discrimination. In all the three
cases a non-elemental processing of stimulus compounds is
needed in order to learn how to solve the problem. Similar
experiments were reproduced in this paper to evaluate the
performance of the developed network that has been im-
plemented using GeNN (GPU-enhanced Neuronal Network
simulation environment). It is a code generation environment
for developing high performing simulations of brain-inspired
neural circuits exploiting the parallel computational processing
of GPU [17]. The neural controller was interfaced with a
dynamic simulation environment [18] where a fly-inspired
walking robot was developed and tested.

II. NEURAL MODEL

The proposed neural architecture consists of four distinct
layers as depicted in Fig. 1. The first layer is an interface
needed between the acquired input patterns and the neural
network. It introduces in the input layer a reasonable level of
current to efficiently encode the features of the object/event
to be classified. The input layer contains a number of class
I Izhikevich spiking neurons [19] equal to the input features
to be processed. The core of the architecture is constituted
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Fig. 1. Block scheme of the MB-inspired developed architecture devoted to
classification. The external input is pre-processed by a layer that randomly
excite the lattice of locally connected spiking neurons. The spiking activity is
exploited for classification using multiple read-out maps in the output layer
that are trained to distinguish the different presented classes.

by a lattice of locally connected spiking neurons of the same
type as the input layer, making this structure in between a
CNN and a liquid state network [12]. At this level we have
a boost of dimensions, needed to correctly classify non-linear
separable patterns. In the last layer we have a series of neurons
working as spatial integrators, to collect the activity distributed
on the lattice, providing in output a weighted sum of the neural
activity. The number of output neurons is equal to the number
of classes/decisions to be identified/selected. Details on the
model are reported in the following.

A. Input layer and current encoding

Each input pattern is a vector of features to be processed and
associated to the available classes: Pj = [p1,j , p2,j ..., pn,j ].

The input encoding procedure is reported below:
1) the range of variability, of input currents [Imin, Imax]

is chosen so as to allow input neurons fire and create a
significant neural activity within the liquid layer;

2) to get a normalized input current, the maximum (Mk)
and the minimum (mk) values of each feature k are
calculated;

3) if the current applied to the k-th input neuron from the
j-th input pattern is Ik,j , then the normalized input value
is evaluated as:

Ik,j = Imin + Imax
pk,j −mk

Mk −mk
(1)

B. The CNN-Liquid State Layer

The weights coming from the input layer to the lattice
of spiking neurons (LSN) are fixed to 1 and subject to a
25% probability of being connected to the LSN. The lattice
contains a percentage of 75% excitatory and 25% inhibitory
neurons [8]. The synaptic weight values among the neurons
are fixed and can randomly assume −10 or 10. The generation
of the synaptic connections within the lattice is based on
a probability depending on the distance di,j between the
presynaptic (i) and postsynaptic (j) neurons (see [1] for more
details). The presence of synaptic connections within the liquid
lattice depends on the euclidean distance di,j between the pre-
synaptic (i) and post-synaptic (j) neurons within the LSN.
The synaptic model is a typical impulse response used to

generate an input current for the post-synaptic neuron when
the pre-synaptic neuron emits a spike. The time constant of
the synaptic model was randomly chosen among the values τ
= 5, and τ = 15 ms. This variability has shown to improve the
dynamics generated inside the network within the processing
time window. The number of neurons considered in this layer
is below 100 (e.g. 8x8, 9x9) that will be demonstrated to
be sufficient to obtain positive results. Therefore, the network
contains a minimal number of neurons able to show the
learning skills and behavioural responses as in the biological
case of the insect model organism. Basically we are trying
to identify the core of the structure useful for classification
that can be enlarged in terms of number of neurons and
connections if we need to improve the network capabilities.
The output neurons, modelled with a linear transfer function,
are massively connected with the LSN. Finally the output
weights, representing the read-out map are subject to learning.

C. Target signals for classification

Classification is here treated as a supervised learning proce-
dure. Once defined the input patterns, composing a learning set
S, we need to define the target signals for each input to be as-
sociated to a specific class. Using the same strategy employed
for motor-skill learning [20] we chose, as target signals, simple
exponential functions of the type T (t) = 1 − e

−t
τt , with two

different time constants τt, one much higher than the other, at
the aim to represent two dynamics with different speeds.

In particular, if an enhanced response is desired (i.e. for
the class corresponding to the currently considered input) the
output signal has to reach the maximum value equal to one in
the time window of 50ms (corresponding to 500 integration
steps with an integration step dt = 0.1ms): this is simply
obtained using a small time constant τt = 1ms. On the other
hand, the target signal is confined to low values using a larger
time constant τt = 100ms.

D. Learning strategy

The classification task is accomplished by implementing a
learning algorithm. In particular, the free parameters to be
learned are collected in the synaptic weight matrix W, which
is related to the vector T, representing the target signal, by
the following equation: T = ZW.

Generally, Z is a rectangular matrix comprising all the time-
varying post-synaptic currents coming from the lattice and
directed to the output neurons. We initially investigated the
performance of the architecture adopting a standard method
to solve the problem: the Moore-Penrose pseudoinverse of Z

is calculated (Z+), thus obtaining Z+ ≡
(
ZTZ

)−1
ZT , and

then W = Z+T.
Simple incremental learning strategies, based on the Least

Mean Square algorithm, adopted in other works [8], are
currently being evaluated for further development.

III. CASE OF STUDY

Classification problems can be related not only to object
recognition but also to decision making processes. For instance



Fig. 2. Simulation set-up developed in the V-REP dynamic environment. A
fly-inspired legged robot is asked to walk in a multiple Y-maze environment
selecting the suitable route and motor actions through the processing of visual
cues acquired from landmarks placed in each selection chamber.

motor actions can be performed according to the environ-
mental conditions as demonstrated in maze experiments with
honeybees [15]. To reproduce these experiments, a multiple
Y-maze was designed. The fly-inspired walking robot should
solve the maze by processing some visual landmarks, whose
properties provide the required information to make two
distinct and independent decisions: select the turning direction
and decide a behaviour (i.e. walking or climbing), based on the
presence of an obstacle in the chosen direction. The robotic
system and the working scenario were implemented in the
dynamic simulation environment [18] as depicted in Fig. 2

Locomotion control is performed using a Central Pattern
Generator developed through a multi-template approach [21].
The robot is equipped with proximity sensors used to avoid
collisions [22], [23] and with a visual system able to extract
visual cues from landmarks placed in each chamber of the
maze. Each landmark is endowed with two types of informa-
tion: colour and shape. The first property is encoded as an
RGB vector representing the chromatic intensities for each
channel, whereas the shape can be set in few configurations
(square, vertical or horizontal rectangle). The former feature
is used to encode the turning direction, the latter to codify the
presence of an obstacle in the right or left branch. Furthermore,
following the biological experiments [15], we performed a
simulation related to Positive Patterning Discrimination: given
two features A and B, the paradigm assumes that either A or B
are reinforcing features, while the combined feature AB is not
reinforced. In our simulations, the network has been designed
to provide in output two independent set of motor actions:
”Turn-left” or ”Turn-Right” and ”Walk” or ”Climb”. The left
and right decision depends on the colour of the landmark:
in the performed simulation both the red and green colour
were associated to a right turn whereas the combination of
the two (i.e. yellow) is associated to a left turn creating a
non linear separable problem as depicted in [15]. The shape
of the landmark is also used: the horizontal/vertical distribut-
edness is a common feature used by insects to discriminate
objects. In our case a prominence in the horizontal (vertical)
distributedness means an obstacle on the right (left) side of the
Y-maze. The square shape indicates the absence of obstacles.

Fig. 3. Comparison between the assigned target, the output of the network
after the learning process and its mean value.

If an object is present in the selected branch, the locomotion
is adapted to allow the climbing [24]. The learning dataset is
constituted by nine elements, five for the input and four for
the target. The five inputs correspond to the RGB component
of the landmark and the horizontal and vertical distributedness
that were simplified in this simulation as digital values on the
basis of a threshold on the base-to-height ratio of the acquired
rectangular shape of the landmark. The blue channel does
not contain useful information for the designed experiment:
therefore it introduce noise into the network. Several network
configurations were randomly generated and tested using a
dataset of 2750 entries: the 80% were used for the learning
phase and the remaining for the testing phase. An example
of comparison between the assigned target and the output
generated by the network is reported in Fig. 3. The network
outputs are evaluated couple-wise (Turn-Left vs Turn-right and
Walk vs climb). To select the two winning output neurons for
each input pattern, a simple analysis is performed evaluating
the mean value of the time evolution during the 500 integration
steps of simulation for each couple of neurons. The output
neurons with the highest level, evaluated couple-wise, win the
competition and will drive the robot actions.

Several performance indexes can be calculated for evalua-
tion. An approach, commonly used, is based on the confusion
matrices. For a multi-class classification issue (like in this
case) with N output classes, a confusion matrix is a N -by-N
matrix that quantifies how many classes have been correctly
identified. The diagonal of this matrix reports the positive
results, whereas all the other terms are classification errors;
therefore, if the confusion matrix is M = (Mij) then the
success rate is given by:

Psuccess =
Tr (M)∑
i,j Mij

× 100 (2)

Another common index considered in machine learning is
the Matthews Correlation Coefficient [25] defined as follows:

MCC =
TP × TN − FP × FN√

(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)

where TP, TN,FP, FN are the number of true positives,
true negatives, false positives and false negatives, respectively.



Fig. 4. Confusion matrix obtained from the simulation of a representative
case both for the learning patterns and for the testing ones.

The results obtained in the performed experiments are the
following:

Psuccess,learning = 87.05%;MCClearning = 0.82;
Psuccess,test = 86.91%;MCCtest = 0.82

The confusion matrix obtained for the learning and the
testing phase are also reported in Fig. 4. The results obtained
allow to efficiently drive the robot model and are prone to be
further improved, especially in the fourth choice: the testing
results are at a lower level than the learning ones. This could
be due to the absence of enough information into the learning
set, and this is currently under investigation.

IV. CONCLUSION

In this work we propose a neural structure inspired by
the insect MBs, able to perform pattern discrimination also
in presence of non-elementary association. From biological
experiments with honeybees a similar simulation was set up,
considering a Drosophila-inspired walking robot moving in a
Y-maze environment. Standard performance indexes were con-
sidered to evaluate the proposed neural architecture. Notably,
the structure used here for classification can be integrated
within a more complex neuro-computing architecture, inspired
by the insect brain and reported in literature, able to show
other complex behaviors, like attention, expectation, motor and
sequence learning [26], [8]. For instance, the output neurons
can be used for different purposes: to classify inputs as well as
to provide time varying signals to control relevant parameters
of the locomotion system in case of motor learning [27].
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