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Abstract—In bio-inspired robotics, rhythmic coordination of
limbs can be obtained either by using Central Pattern Generators
(CPGs) without the involvement of sensory signals, or with a
massive feedback that, mainly through proprioceptive sensors,
allows the emergence of walking gaits. The aim of this paper
is to propose a minimal approach to develop a decentralized
locomotion controller for a Drosophila-inspired simulated robot,
based on spiking neurons, with the addition of an attitude
controller to improve locomotion stability. Walking gaits can be
successively learned to create a CPG that can be used in absence
of external stimuli or in order to build an internal locomoto r
estimator.

I. I NTRODUCTION

In literature the problem of locomotion control in multi-
legged structures, inspired by insects, follows two distinct
approaches: a centralized control able to generate in feed-
forward the joint signals needed to obtain a coordinated
locomotion gait [1], [2] and a decentralized solution that relies
on proprioceptive sensors to adapt the joint movements for a
stable walking [3], [4], [5]. A comparison between the main
elements of the two approaches is synthesized in Table I. Sev-
eral intermediate solutions can be adopted between these two
extreme cases: for instance the inclusion of high level sensors
in a CPG to adapt the walking gaits to the environment [6]
or the inhibition of the sensory-driven control when the robot
speed is high (e.g. escaping reactions). Our aim is to develop
a minimal decentralized controller inspired by the Walknet
control scheme [7], able to generate the joint position signals
for a stable walking in a 18 DoF hexapod robot inspired by
the Drosophila melanogaster. The control system is therefore
distributed among the legs and was developed using a spiking
neural network based on an agonist-antagonist structure: each
joint is controlled by two neurons that modulate the clock-
wise and anticlock-wise movement (e.g. Elevator/Flexor).We
included a limited number of sensors, in particular stretch
sensors and ground contact sensors, that guide each neuron ac-
tivity. A relevant aspect consists in considering the interaction
between the network and the input signals (i.e. sensors) based
on events. When an event occurs, it determines a change in the
network dynamics (e.g. modifying the input current in some
neurons) and gives rise to a certain locomotion phase. In this
way the network dynamics is subject to specific sensor signals
only for a limited time window, reducing the data acquisition
and processing to generate a stable walking gait. The neural
controller was designed considering a simulated, but realistic

TABLE I
COMPARISON BETWEEN CENTRALIZED AND DECENTRALIZED

APPROACHES.

Characteristics Centralized Decentralized

Central Oscillators X x
Flexible x X

Sensory feedback x X

Escape reactions X x
Predictions X x

Independent control of legs x X

biomimetic model of theDrosophila melanogaster, charac-
terised by a highly asymmetric leg structure as shown in Fig.
1. The simulations were performed in a dynamic environment
where all the relevant data were acquired and processed to
evaluate the performance of the proposed locomotion control
strategy. The Izhikevich’s spiking neuron, for its very low-
cost computational burden, was recently employed as a basic
block to model high level capabilities of the insect brain [8],
like motor-skill learning [9] and sequence learning [10], [11].
This paper extends the range of applications of the Izhikevick’s
neural model [12] also to the decentralised locomotion control,
addressing from reflex based locomotion to perceptual be-
haviors as demonstrated in other works using spatio-temporal
patterns of activity [13], [14].

II. DYNAMICAL STRUCTURE AND NEURAL MODEL

The dynamic simulation environment taken into account is
the V-REP from Coppelia Robotics [15]. This environment can
be easily interfaced with other programming tools using the
available API. In our case the neural controller was designed
in Matlab to allow a fast development facilitating the data
post-processing. The use of a dynamic simulator allowed
to design, based on the insect leg motion, a stereotyped
periodic trajectory for the tip of each leg to be used as a
reference motion signal for the robot legs. In this way, the
time evolution of the angular position of the leg joints (see
Fig. 1) was obtained through an inverse kinematics approach.
The realization of a minimal spiking neural network controller
was then performed, based on mechanosensory feedback,
with the aim to emulate the behaviour of motor neurons
characterised by a non-endogenuos periodic dynamics. The
periodic motion should emerge from the interplay among
the spiking activity and the sensor triggering, enabling the
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Fig. 1. Fly-inspired dynamical model developed in V-REP. The reference
trajectory for each leg is outlined together with the main phases of the leg
motion: protraction/retraction (via the thoraco-coxa joint), levation/depression
(via the coxa-trochanter joint), and flexion/extension (using the femur-tibia
joint). AEP (PEP) indicates the Anterior (Posterior) Extreme Position.

generation of a walking gait which can be adapted to different
situations identified by the sensors. We considered, as network
inputs, a series of proprioceptive and exteroceptive sensors,
namely the stretch of the leg muscle and the ground contact
(GC) on each leg tip. The whole spiking network used to
model the locomotion controller is based on the Izhikevich’s
spiking neuron, proposed in [12]. This model offers many
advantages from the computational point of view. Due to its
simplicity, several circuits implementation, including VLSI,
were recently proposed. The adopted parameters elicit the
behaviour of a Class2 neuron which, for a given input current
shows a constant spiking frequency after a very short transient.
Coordination among all leg joints is necessary for a proper
walking. It is known that in stick insects, at least at low
speed, there is no central coupling between the activities of
motorneurons controlling different leg joints. For a proper
walking control system, two key aspects should be considered:
the control of movement of individual legs and the spatio-
temporal coordination among different legs. Insect leg motion,
apart from the particular leg kinematics peculiar for each
species, consists in a series of basic motions, outlined in Fig.
1, whose suitable combination guides the leg through either
the stance phase (where the leg supports the body weight)
or the swing phase (with the leg lifted off the ground). A
decentralised approach requires a proper chaining among these
phases, triggered by sensory stimuli. Mechanosensors found in
insect legs can functionally be separated into position sensors
and load sensors. Position sensors monitor joint angle position
and eventually speed. The main receptors that detect forces
in insect legs are thecampaniform sensillas that monitor
forces as strains in the exoskeleton [5]. To obtain the desired
synchronization between the three leg signals, based on the
reference motion trajectories, we designed three networks, one
for each joint, consisting of two antagonistic neurons. The
inputs to the networks, analogously to the biological case
discussed in [16] for the stick insect, are only the stretching
sensors of coxa and tibia, and the GC. Their role, in our
implementation, is to trigger a given event, modulating the
injected neural current, in order to onset locomotion in relation
to the feedback from the environment.

TABLE II
STRETCHING SENSORS OF ANTERIOR LEG

Stretching
sensors

Joint Value
[deg]

Involved motorneurons

S1 Coxa ≥35 Retractor
S1,1 Coxa ≃25 Retractor, Levator, Flexor
S1,2 Coxa ≃-3 Retractor
S2 Coxa ≤-7 Protractor, Depressor, Extensor, Flexor
S3 Tibia ≥35 Extensor
S4 Tibia ≤-9 Extensor, Flexor

The biological walking model of the stick insect [7], was
simplified considering less stretching sensors for the different
joints and including GC sensors instead of load sensors. This
is also convenient in order to avoid oscillations in the load
signals caused by the natural undulations appearing in the
legged robot attitude while walking. All the three joint signals
are referred to the stretching sensors monitoring the coxa joint
that is considered as a driver.

In table II, the sensors (reported only for the anterior leg)
are used as inputs for the motor neurons involved during
a stepping cycle. It can be noticed that we are using only
position sensors related to the coxa joint to guide the mo-
torneurons of each leg. This minimal solution further simplifies
the design process of the network and is also supported by
target trajectories acquired in the simulation environment.
Finally, the outputs of the neural network are the incremental
angular positions of the coxa, femur and tibia joints, generated
through the integration of the neuron spiking rate normalized
with a constantK set in order to have the desired angular
variation per second.

The time evolution of the joint position of one anterior leg,
obtained using the inverse kinematics, is shown in Fig. 2 (a).
The stepping cycle can be sub-divided into four phases: early
and late stance and early and late swing, as results from the
change in the coxa joint signal slope (Fig. 2 (a)). To reproduce
this behaviour a network of motorneurons was designed: for
each leg there are six motorneurons that are either excited (+)
or inhibited (-) by the sensory inputs. The interactions with
the sensors during the four phases of the stepping cycle for
the anterior leg are reported in Fig. 3. In Fig. 3 (a) and (b)
the two parts of the swing phase are indicated. The sensor
S1,2 triggers the start of the early swing phase: the coxal
retractor motorneuron is excited with a reduced current that
produces a slow starting of coxa retraction. The femur, in this
phase, is still in rising phase being activated in the previous
late stance phase (Fig. 3 (d)). Moreover, during this phase,
the two antagonist tibial motorneurons (flexor/extensor) are
spiking, triggered by the stretching sensorS4 (see Fig. 3). This
freezes the tibia joint, approximating the inverse kinematic
signal. Subsequently, in the Late swing phase,S2 the coxal
stretching sensor, acts on the protractor coxal motorneuron,
on the femural depressor and on the tibia joint. In details,
S2 becomes active when coxa reaches its minimum angular
value (∼= −7

◦), hence, the coxal protractor motorneuron starts
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Fig. 2. (a) Swing and stance phases of anterior leg (L1) acquired through the
inverse kinematics approach applied to the simulated robot. (b) Stepping cycle
of an anterior leg obtained using the neural controller. Thesensor activities
that generate the state transitions are also reported.

to fire and the retractor motorneuron is inhibited, allowing
coxa to move forward. Furthermore,S2 triggers the action
of femur depressor motorneuron, and contemporarily inhibits
the flexor motorneuron and excites its antagonist, allowingthe
tibial extension. Fig. 3 (c) and (d) are related to the stance
phase. Initially, sensorS1 triggers the start of stance, causing
the excitation of the retractor. Simultaneously,S3 produces
the activation of both tibial motorneurons, to approximatethe
plateau region indicated by the inverse kinematics. During
early stance, femur depressor continues to be active, since
this action was triggered in the previous state. The leg in this
phase reaches its Anterior Extreme Position (AEP), causing
the triggering of the GC. In the last state, the GC, together
with sensorS1,1 increases the current of the coxal retractor
motorneuron, which is still in the firing state, enhancing its
spiking rate. Contemporarily, they excite the femural levator,
inhibit the tibial extensor and excite the flexor, allowing the
tibial flexion. For the other legs a similar procedure was
adopted. The dynamics produced by the network is reported
in Fig. 2 (b) to be compared with Fig. 2 (a). It can be noticed
that the time evolutions of all the joints fairly approximate
the target signals, taking also into account the simplifications
caused by the minimal amount of slope changes triggered by
the leg sensors. Moreover the sharp changes in position will
be filtered by the actuators improving the matching with the

RET

DEP

FLX

PRO

LEV

EXT

RET

DEP

FLX

PRO

LEV

EXT

S12

+

COXA

FEMUR

TIBIA

Early Swing

State I

S4

+ +

(a)

S2 AND S4

RET

DEP

FLX

PRO

LEV

EXT

RET

DEP

FLX

PRO

LEV

EXT

S2

-

+ -

- +

+

Late Swing

State II

COXA

FEMUR

TIBIA

(b)

RET

DEP

FLX

PRO

LEV

EXT

RET

DEP

FLX

PRO

LEV

EXT

S1

-+

++

S3

COXA

FEMUR

TIBIA

Early Stance

State III

(c) (d)

Fig. 3. Active stimuli for the Anterior leg Network at the beginning of the
swing phase (a) and at the end (b). The Signals triggering theearly (c) and
late (d) stance phase are also reported.

targets.

III. C OORDINATION RULES AND ATTITUDE CONTROL

Basic leg motions need to be coordinated to generate and
maintain the robot walking stability. Therefore in addition to
sensory information, we need to implement a minimal number
of coordination rules: each leg has to receive information about
the state of its ipsilateral and contralateral neighbouring legs.
We found that two inhibitory coordination rules, one for the
leg in swing condition and the other for the stance condition
can be adopted: when a leg arrives at the posterior extreme
position (PEP), i.e. before starting the swing phase, if its
ipsilateral or contralateral neighbours have not yet reached the
AEP, i.e. they are not in stance, its swing phase is temporarily
inhibited. Similarly, if a leg arrives to the AEP, if its ipsilateral
and contralateral neighbours have not yet reached the PEP,
it will have to wait before starting the stance phase. This
last rule prevents more than three legs to be in stance phase,
encouraging a steady state alternating tripod. Relaxing this
rule, a number of different gaits are possible. The stepping
diagrams acquired from the GC sensors reported in Fig. 4,
demonstrate how, even if the legs start from a tripod gait
configuration, the absence of coordination rules (in Fig. 4 (a))
produces a phase shift (due to environmental disturbances)
that can affect the robot stability. Instead, the afore mentioned
coordination rules allow a maintenance of a stable walking
gait (see Fig. 4 (b)). Due to the system asymmetries in the



(a) (b)

Fig. 4. Stepping diagrams starting from an alterating tripod initial conditions
when the coordination rules are turned off (a) or applied (b). The stance phase
is shown in white whereas the swing phase in black.
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Fig. 5. Time evolution of the roll, pitch and yaw angle when the robot moves
forward without (a) and with (b) an attitude controller.

leg design as well as to the approximation of the inverse kine-
matics, the interaction with the environment during walking
produces oscillations of the robot body as reported in Fig. 5
(a) in terms of roll, pitch and yaw. To reduce this problem, we
included an attitude controller that, acting on the femur leg
joint, reduces the pitch and roll oscillation during walking.
The controller introduces a Proportional Integral action on
the the robot absolute position, modifying the offset of the
femur joint of the front and hind legs to control the pitch
angle and the offset of the femur joint in the left and right
side of the robot to control the roll angle. Since the target
is to maintain the posture during walking, the controller is
active when the roll and pitch error exceed a given threshold
(see Fig. 5 (b)). Starting from the decentralized approach,a
CPG controller can be developed through a simple learning
of the activation delays among the neurons in each leg. In
this way sensory information can be ignored maintaining the
learned stable coordination. This mechanisms is useful both
to further simplify the control mechanism and to evaluate if
the environmental conditions are changing. If, for instance,
the robot encounters a different terrain, the predicted sensory
signals and the real ones have a discrepancy. When this type
of change is detected the decentralized controller can takethe
lead again to adapt the robot locomotion to the new external
condition waiting for a new steady state condition to be learned
again.

IV. CONCLUSION

The minimal decentralized control network here proposed is
constituted by three pairs of spiking neurons for each leg and
it is able to generate the needed oscillatory motion integrating

the local sensory information. To coordinate the phase rela-
tions among legs, simple coordination rules were developed
guaranteeing the robot stability during the stance/swing tran-
sition of the different legs. Moreover, due to the asymmetric
design of the legs, inspired by theDrosophila melanogaster,
robot posture needs to be controlled to improve the stability of
the locomotion gait. Centralized and decentralized approaches
to locomotion have to be seen as complementary, therefore we
tried to develop a minimal decentralized control scheme that
can be reduced to a simple CPG creating virtual sensors that
reproduce the timing of the real ones.
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[8] P. Arena, C. Berg, L. Patané, R. Strauss, and P. Termini,“An insect brain
computational model inspired by drosophila melanogaster:Architecture
description,” in Proc. of the Int. Joint Conf. on Neural Networks,
Barcelona, Spain, 2010, pp. 831–837.

[9] E. Arena, P. Arena, R. Strauss, and L. Patané, “Motor-skill learning
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