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Abstract—In bio-inspired robotics, rhythmic coordination of TABLE |

limbs can be obtained either by using Central Pattern Genertors COMPARISON BETWEEN CENTRALIZED AND DECENTRALIZED

(CPGs) without the involvement of sensory signals, or with a APPROACHES

massive feedback that, mainly through proprioceptive serms,

allows the emergence of walking gaits. The aim of this paper | Characteristics | Centralized | Decentralized |

is to propose a minimal approach to develop a decentralized Central Oscillators v X

locomotion controller for a Drosophila-inspired simulated robot, Flexible X v

based on spiking neurons, with the addition of an attitude Sensory feedback X v

controller to improve locomotion stability. Walking gaits can be Escape reactions v X

successively learned to create a CPG that can be used in absen Predictions v X
Independent control of leg X v

of external stimuli or in order to build an internal locomoto r
estimator.

| INTRODUCTION biomimetic model of theDrosophila melanogaster, charac-

In literature the problem of locomotion control in multi-tgrised by a highly asymmetric leg structure as shown in Fig.
legged structures, inspired by insects, follows two dting. The simulations were performed in a dynamic environment
approaches: a centralized control able to generate in feqghere all the relevant data were acquired and processed to
forward the joint signals needed to obtain a coordinateqaluate the performance of the proposed locomotion contro
locomotion gait [1], [2] and a decentralized solution theltes  strategy. The Izhikevich’'s spiking neuron, for its very low
on proprioceptive sensors to adapt the joint movements fogst computational burden, was recently employed as a basic
stable walking [3], [4], [5]. A comparison between the maiyjock to model high level capabilities of the insect braif, [8
elements of the two approaches is synthesized in Table }. S@¥e motor-skill learning [9] and sequence learning [1AJ1].
eral intermediate solutions can be adopted between these typis paper extends the range of applications of the Izhifevi
extreme cases: for instance the inclusion of high level@®nsneyral model [12] also to the decentralised locomotionront
in a CPG to adapt the walking gaits to the environment [§]qdressing from reflex based locomotion to perceptual be-
or the inhibition of the sensory-driven control when theabb haviors as demonstrated in other works using spatio-teahpor

speed is high (e.g. escaping reactions). Our aim is to develgatterns of activity [13], [14].
a minimal decentralized controller inspired by the Walknet

control scheme [7], able to generate the joint positionaign ~ !I- DYNAMICAL STRUCTURE AND NEURAL MODEL

for a stable walking in a 18 DoF hexapod robot inspired by The dynamic simulation environment taken into account is
the Drosophila melanogaster. The control system is thereforethe V-REP from Coppelia Robotics [15]. This environment can
distributed among the legs and was developed using a spiklmgy easily interfaced with other programming tools using the
neural network based on an agonist-antagonist structacdt eavailable API. In our case the neural controller was designe
joint is controlled by two neurons that modulate the clockn Matlab to allow a fast development facilitating the data
wise and anticlock-wise movement (e.g. Elevator/FleXd3. post-processing. The use of a dynamic simulator allowed
included a limited number of sensors, in particular stretdb design, based on the insect leg motion, a stereotyped
sensors and ground contact sensors, that guide each nedromperiodic trajectory for the tip of each leg to be used as a
tivity. A relevant aspect consists in considering the iat¢ion reference motion signal for the robot legs. In this way, the
between the network and the input signals (i.e. sensorgdbatme evolution of the angular position of the leg joints (see
on events. When an event occurs, it determines a change infiige 1) was obtained through an inverse kinematics approach
network dynamics (e.g. modifying the input current in som&he realization of a minimal spiking neural network congol
neurons) and gives rise to a certain locomotion phase. i thias then performed, based on mechanosensory feedback,
way the network dynamics is subject to specific sensor signatith the aim to emulate the behaviour of motor neurons
only for a limited time window, reducing the data acquisitio characterised by a non-endogenuos periodic dynamics. The
and processing to generate a stable walking gait. The neyvatiodic motion should emerge from the interplay among
controller was designed considering a simulated, butséali the spiking activity and the sensor triggering, enabling th



TABLE Il
STRETCHING SENSORS OF ANTERIOR LEG

Stretching Joint  Value  Involved motorneurons

sensors [deg]
S1 Coxa >35 Retractor
S1,1 Coxa ~25 Retractor, Levator, Flexor
S1,2 Coxa ~-3 Retractor
! \\ix Sa Coxa <-7 Protractor, Depressor, Extensor, Flexor
- ‘\ M;\Jq\\ # S3 Tibia  >35 Extensor
w gl T Sa Tibia <-9 Extensor, Flexor

Fig. 1. Fly-inspired dynamical model developed in V-REPeTheference
trajectory for each leg is outlined together with the mairagés of the leg

motion: protraction/retraction (via the thoraco-coxanfi levation/depression The biological Walking model of the stick insect [7], was

(via the coxa-trochanter joint), and flexion/extensionir{gsthe femur-tibia ; e : : : .

joint). AEP (PEP) indicates the Anterior (Posterior) Ertee Position. ;mphﬁed qonS|d.er|ng less Stretchmg sensors for theecsfit .
joints and including GC sensors instead of load sensors Thi
is also convenient in order to avoid oscillations in the load

generation of a walking gait which can be adapted to differefignals caused by the natural undulations appearing in the
situations identified by the sensors. We considered, asonetw/€99€d robot attitude while walking. All the three joint sajs
inputs, a series of proprioceptive and exteroceptive sensé'e r_eferred_to the stretchl_ng sensors monitoring the amixa |
namely the stretch of the leg muscle and the ground contdegt is considered as a driver.

(GC) on each leg tip. The whole spiking network used to In table Il, the sensors (reported only for the anterior leg)
model the locomotion controller is based on the Izhikewichare used as inputs for the motor neurons involved during
spiking neuron, proposed in [12]. This model offers mang Stepping cycle. It can be noticed that we are using only
advantages from the computational point of view. Due to ig0sition sensors related to the coxa joint to guide the mo-
simplicity, several circuits implementation, including_$1, torneurons of each leg. This minimal solution further sifiged
were recently proposed. The adopted parameters elicit the design process of the network and is also supported by
behaviour of a Clas8 neuron which, for a given input currenttarget trajectories acquired in the simulation environtmen
shows a constant spiking frequency after a very short teansi Finally, the outputs of the neural network are the increralent
Coordination among all leg joints is necessary for a propahgular positions of the coxa, femur and tibia joints, gatest
walking. It is known that in stick insects, at least at lovihrough the integration of the neuron spiking rate nornealiz
speed, there is no central coupling between the activities With a constantk” set in order to have the desired angular
motorneurons controlling different leg joints. For a propevariation per second.

walking control system, two key aspects should be considere The time evolution of the joint position of one anterior leg,
the control of movement of individual legs and the spatigbtained using the inverse kinematics, is shown in Fig. 2 (a)
temporal coordination among different legs. Insect legiompt The stepping cycle can be sub-divided into four phasesy earl
apart from the particular leg kinematics peculiar for eadind late stance and early and late swing, as results from the
species, consists in a series of basic motions, outlinedgn Fchange in the coxa joint signal slope (Fig. 2 (a)). To repoedu

1, whose suitable combination guides the leg through eithbis behaviour a network of motorneurons was designed: for
the stance phase (where the leg supports the body weigtdkh leg there are six motorneurons that are either excided (
or the swing phase (with the leg lifted off the ground). Aor inhibited (-) by the sensory inputs. The interactionshwit
decentralised approach requires a proper chaining amesg ththe sensors during the four phases of the stepping cycle for
phases, triggered by sensory stimuli. Mechanosensorslfioun the anterior leg are reported in Fig. 3. In Fig. 3 (a) and (b)
insect legs can functionally be separated into positios@en the two parts of the swing phase are indicated. The sensor
and load sensors. Position sensors monitor joint angldiposi S, » triggers the start of the early swing phase: the coxal
and eventually speed. The main receptors that detect forcegactor motorneuron is excited with a reduced current tha
in insect legs are theampaniform sensillas that monitor produces a slow starting of coxa retraction. The femur, is th
forces as strains in the exoskeleton [5]. To obtain the ddsirphase, is still in rising phase being activated in the presio
synchronization between the three leg signals, based on le stance phase (Fig. 3 (d)). Moreover, during this phase,
reference motion trajectories, we designed three networies the two antagonist tibial motorneurons (flexor/extensag a
for each joint, consisting of two antagonistic neurons. Thapiking, triggered by the stretching sensar(see Fig. 3). This
inputs to the networks, analogously to the biological cadeeezes the tibia joint, approximating the inverse kinemat
discussed in [16] for the stick insect, are only the stretghi signal. Subsequently, in the Late swing phaSe,the coxal
sensors of coxa and tibia, and the GC. Their role, in ostretching sensor, acts on the protractor coxal motormguro
implementation, is to trigger a given event, modulating then the femural depressor and on the tibia joint. In detalils,
injected neural current, in order to onset locomotion iatieh .S, becomes active when coxa reaches its minimum angular
to the feedback from the environment. value & —7°), hence, the coxal protractor motorneuron starts
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Fig. 3. Active stimuli for the Anterior leg Network at the beging of the
Fig. 2. (a) Swing and stance phases of anterior leg (L1) aeduhrough the swing phase (a) and at the end (b). The Signals triggeringe#hly (c) and
inverse kinematics approach applied to the simulated r¢bpStepping cycle |ate (d) stance phase are also reported.
of an anterior leg obtained using the neural controller. $aesor activities
that generate the state transitions are also reported.

targets.

to fire and the retractor motorneuron is inhibited, allowing !!l- COORDINATION RULES AND ATTITUDE CONTROL

coxa to move forward. Furthermoré; triggers the action Basic leg motions need to be coordinated to generate and
of femur depressor motorneuron, and contemporarily itdibimaintain the robot walking stability. Therefore in additito

the flexor motorneuron and excites its antagonist, allovliy sensory information, we need to implement a minimal number
tibial extension. Fig. 3 (c) and (d) are related to the stanoécoordination rules: each leg has to receive informatiooLa
phase. Initially, sensaf; triggers the start of stance, causinghe state of its ipsilateral and contralateral neighbauteys.

the excitation of the retractor. Simultaneous$ produces We found that two inhibitory coordination rules, one for the
the activation of both tibial motorneurons, to approximte leg in swing condition and the other for the stance condition
plateau region indicated by the inverse kinematics. Durirgan be adopted: when a leg arrives at the posterior extreme
early stance, femur depressor continues to be active, sipmsition (PEP), i.e. before starting the swing phase, if its
this action was triggered in the previous state. The leg i thpsilateral or contralateral neighbours have not yet reddhe
phase reaches its Anterior Extreme Position (AEP), causiAgP, i.e. they are not in stance, its swing phase is tempyrari
the triggering of the GC. In the last state, the GC, togethhibited. Similarly, if a leg arrives to the AEP, if its ipateral

with sensorS; ; increases the current of the coxal retractand contralateral neighbours have not yet reached the PEP,
motorneuron, which is still in the firing state, enhancing itit will have to wait before starting the stance phase. This
spiking rate. Contemporarily, they excite the femural teva last rule prevents more than three legs to be in stance phase,
inhibit the tibial extensor and excite the flexor, allowirget encouraging a steady state alternating tripod. Relaxing th
tibial flexion. For the other legs a similar procedure wasile, a number of different gaits are possible. The stepping
adopted. The dynamics produced by the network is reporteidgrams acquired from the GC sensors reported in Fig. 4,
in Fig. 2 (b) to be compared with Fig. 2 (a). It can be noticedemonstrate how, even if the legs start from a tripod gait
that the time evolutions of all the joints fairly approxireat configuration, the absence of coordination rules (in Figa)} (
the target signals, taking also into account the simplificet produces a phase shift (due to environmental disturbances)
caused by the minimal amount of slope changes triggered tmat can affect the robot stability. Instead, the afore noeaed

the leg sensors. Moreover the sharp changes in position vetiordination rules allow a maintenance of a stable walking
be filtered by the actuators improving the matching with thgait (see Fig. 4 (b)). Due to the system asymmetries in the
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Fig. 4. Stepping diagrams starting from an alterating ttiputial conditions
when the coordination rules are turned off (a) or applied The stance phase
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the local sensory information. To coordinate the phase- rela
tions among legs, simple coordination rules were developed
guaranteeing the robot stability during the stance/swing-t
sition of the different legs. Moreover, due to the asymnoetri
design of the legs, inspired by tHarosophila melanogaster,
robot posture needs to be controlled to improve the stglufit

the locomotion gait. Centralized and decentralized apgres

to locomotion have to be seen as complementary, therefore we
tried to develop a minimal decentralized control schemé tha
can be reduced to a simple CPG creating virtual sensors that
reproduce the timing of the real ones.

is shown in white whereas the swing phase in black.

(1]

imels ° 2]
(b)

Fig. 5. Time evolution of the roll, pitch and yaw angle wheer thbot moves
forward without (a) and with (b) an attitude controller.

(3]
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