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Abstract

Learning and reproducing temporal sequences is a fundairanitity used by
living beings to adapt behavior repertoire to environmkcdastraints. This pa-
per is focused on the description of a model based on spik&ugoms, able to
learn and autonomously generate a sequence of events. Tha achitecture
is inspired by the insect Mushroom Bodies (MBs) that are &iaficenter for
multimodal sensory integration and behaviour modulatibhe sequence learn-
ing capability coexists, within the insect brain compuiatl model, with all the
other features already addressed like attention, expactdearning classifica-
tion and others. This is a clear example that a unique netraitare is able to
cope concurrently with a plethora of behaviours. Simutatiesults and robotic
experiments are reported and discussed.
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1. Introduction

Learning is a fundamental feature used by living beingsdapsation. We can
identify two well-defined forms of learningClassical conditioningvhen corre-
lations betweemunconditionedand conditionedstimuli are learned, leading the
animal to provide conditioned responses, @ukrant learningvhen animals are
requested to acquire knowledge from the consequencesiobtireactions. How-
ever, the complexity of the environmental conditions somes requires more So-
phisticated learning mechanisms. Sequence learning isfoihe most powerful
kinds of behavioural improvement in living beings. For exden learning a se-
guence of sensory/motor actions is a key aspect of motamnitegrrecognizing a
sequence of objects can be useful for orientation behavibng capabilities to
learn time-constrained associations are fundamentalegitsfior sequence learn-
ing.

The problem of sequence learning has been faced in literating different
approaches based on artificial models (Sun and Giles, 2@@d9t of them de-
rived from Jordan and Elman’s recurrent networks (Elma®019ordan, 1986).
Hebbian learning schemes were proposed in Wang and Arb80jhere neu-
ral networks eliciting short term memory (STM) were abledarh and recognize
temporal sequences. Later on Billard and Hayes (1999) geapa connectionist
architecture, DRAMA (Dynamical Recurrent Associative MagnArchitecture),
for dynamic control and learning of autonomous robots. Thetime-delay re-
current neural network, using Hebbian update rules ableamlspatio-temporal
regularities in discrete sequences of noisy inputs.

Nowadays the study of animal brains and the modeling of asieweural

structures on the basis of behavioral experiments contislyamprove the knowl-



edge about learning mechanisms. Several attempts can bé fioliterature re-

lated to the development of algorithms or bio-inspired reks able to model the
functionalities expressed by specific brain centers of malsmmolluscs and in-
sects (Webb and Consi, 2001). Looking in details insidertbedt world, there are
very interesting species where, in spite of the relativelsmamber of neurons,
the complexity of their behavior repertoire is impressive.

Discovering where and how sequence learning is formedinextaand ex-
tracted, is a hard task, however insects can represent agjaduhg point. In
fact in insects there are neurobiological evidences ofgsses related to spatio-
temporal pattern formation and time-dependent learninghaigisms that can be
used to solve tasks that include sequence learning. Theptaastible brain struc-
tures involved in these processes areltheshroom Bodie$MBSs) that, together
with the Lateral Horns(LHSs), are principally devoted to olfactory learning (Liu
and Davis, 2006). The spatio-temporal olfactory informatoming out from the
Antennal Lobes (ALs) are processed and stored in spatisdrpatthat can evolve
in time and can be associated to specific behavioral respdHserta, 2009). The
spatio-temporal coding in such neural structures has leestigated in Nowotny
et al. (2003), where a model for codifying spatio-temporal pattento spatial
patterns has been implemented. Taking into consideratisnspatio-temporal
pattern formation process that has been unravelled frorfieaeht prospective in
other works (Arenat al., 2008), we investigated the possibility to extend the pro-
cessing capabilities of the MBs system to model an artifm@linspired structure
for sequence learning.

The olfactory model of locusts illustrated in Nowotey al. (2003) clearly

underlines the inhibitory effect of the LH circuit on the MBIks. Each Kenyon



cell is strongly connected with the cells of its neighborthoand connections
between this layer and the Antennal Lobes-like layer ardaarly generated. A
coincidence detection approach allows the model to codifusnces of events
in a spatial pattern of firing neurons. However no learningriplemented in

the model even if successive works started to introducsidieation mechanisms
to the network with the support of reinforcement learningchaisms used to
associate the MBs sparse activity to predefined classest@d2€09).

Looking to mammals we can also find interesting works on tfectdry bulb
for instance in rabbits where the presence of chaotic dyc&imithe formation
of perceptual states is discussed (Freeman, 1987, 20GBmian and coworkers
developed a model of the chaotic dynamics observed in thieabolfactory sys-
tem called K-sets that has been used for classification aterpaecognition and
further extended for action selection in an autonomoustr(ibarter and Kozma,
2005).

Winnerless competition networks were also implementedddehsequences
of firing activities in olfactory networks (Rabinoviatt al, 2001) and later used
in Arenaet al. (2009b) for perceptual purposes.

Another model for sequence learning was proposed in Bexth(2006) where
a neural network was developed to implement context-degrgrearning of com-
plex sequences. The model utilizes leaky integrate-aediéitirons to extract tim-
ing information from its input and modifies its weights usentgarning rule with
synaptic noise. The context layer is used to solve ambagntihere identical in-
puts should be associated to different outputs in the seguéapending on the
previous provided elements. Similarly we started from uelliang the functional-

ities of the insect MBs trying to extend the neural model baapabilities, mainly



devoted to olfactory learning, to perform more complex sasiated to sequence
learning. The idea is to create a unique neural structueetalshow multiple func-
tionalities as demonstrated in several experiments inlwthie MBs are involved
(Glennet al, 2007; Gronenberg and Lopez-Riquelme, 2004). This is vert n
to the concept of Neural Reuse, another additional charsits of biological
neural networks (Anderson, 2010). The architecture heypgsed is a multilayer
spiking network based dazhikevich’sneuron model (I1zhikevich, 2004), in which
the interaction among the different layers, similarly ®biological counterpart,
allows the generation of different capabilities that rafrgen the classical odor
learning to other more complex behaviors like attentiopeetation and sequence
learning.

The MB-inspired architecture proposed in this work can bedu® retrieve
information from a sequence of elements to generate theepagions. Learn-
ing and retrieving of simple sequences can be performedyusaMB model as
discussed in Arenat al.(2012) where the sequence is generated by the temporal
activation of a chain of neurons linked through learnabéestit synapses.

However to deal with complex sequences (e.g. containimguitithat cannot
anambiguously predicted from the previous one) it is nesg$® know the con-
text of each element, this is faced with the introductiornef Context layer which
is fundamental to retrieve this information. The activitiytibe Context layer is
guided by an integration process where previous informatiiffuses spatially
and temporally to create the context for the next presemathnother important
element used in the architecture is ted sequence neurdhat is activated when
no other elements are presented and the sequence is cedsierciuded. The

End sequence neuron performs a reset in the Context lapariag the presenta-



tion of a new sequence.

2. Sequence learning in Nature

Beside their small brain, insects show a very interestingpexity in their
behavior repertoire. Among the different insect speciessblocusts and flies are
certainly the most investigated. When looking for food, ©eéen have to visit
several sites during one foraging trip. They are able tanldéwmw to reach each
new site encountered during the travel. From the detailsitatbee complexity
of the learned sequence we can retrieve information abeubhdural structures
involved in the process. Bees have shown to follow fixed mutetween two
known locations (Janzen, 1971; Heinrich, 1976; Mannindg6)9 To understand
how honeybees might acquire such routes, Collet and congekeamined the
capabilities of bees to learn motor sequences, to corratater instructions to
visual stimuli and if their visual memories are triggeredcoytextual cues related
to their position in a sequence (Collettal,, 1993). A route may thus be composed
of individual path segments which are separated items dirtkgether through
external learned signals.

Sequence learning is a difficult task also for ants and prelny studies in-
dicate that ants perform conditional discriminationsaiely when stimuli are si-
multaneous, but they usually fail when stimuli are seqarite Ibarraet al,
2011). However other studies showed that ants can learectyged foraging
routes guided in part by the visual features that they ernteowiong the route
(Macquartet al,, 2008). Ants could then sequence together the successswe ba
motor programs into a site-specific serial program as a kinglgmature route.

Such a procedure would facilitate animals reducing cogmitieeds imposed by



learning and remembering numerous visually identifiedhaaudks when directing
towards a target. Therefore ants can learn to negotiate a usiag the shapes for
guidance rather than a fixed motor strategy. Trained antsl cai only discrimi-
nate positive from negative shapes, but also learn theadmeguence of choices.
Experiments described in Chameretnal. (1998) show that the contextual signal
must come from previous events in the sequence and be staszdally. How-
ever, the experiments cannot clarify whether ants storevh@e sequence, or
internal linkages extend only one step back in the chain.

To unravel the problem, understanding which neural ceriedsneural paths
are responsible for these behaviors we considered asmetea@imal th®rosophila
melanogastewhere, using genetic tools, it is possible to create mutstimbgving
deficit in learning caused by modifications in the relevantrakcenters involved.

The experiments reported in Murphey (1965) and May and Wallif1968)
represent a first attempt to test the fruit fly behaviour in dtiple T-maze sce-
nario where a sequence of choices have to be performed. Shksrehowed that
in some configurations the fruit fly statistically prefersp@ersist in the selected
chosen action (e.g. left turn) repeating it multiple timssquential repetition)
whereas in a different set-up it preferred switching thasien in time (sequen-
tial alternation). From these results, a clear behaviomisavident and recent
publications on this topic are missing. From preliminarhdéoral experiments
the possibility for flies to learn complex sequences seeniffieudt task to be ac-
complished even if thBrosophila melanogastdrain contains the neural circuits
and learning functions needed.

In previous works aDrosophilainspired insect brain computational model

was developed (Arena and Patané, 2009a, 2014). The papod@Etecture, ap-



plied to simulated and real roving and walking robots, a#dwo reproduce a
series of behaviors shown by fruit fly and other insects irused experiments.
Besides basic navigation skills like visual targeting,uaislearning, detour and
spatial memory (Arenat al, 2011; Mronz and Strauss, 2008) the role of MBs in
scenarios that include attention, expectation and delaya&dh-to-sample tasks
was discussed (Arenet al, 2013). Here, following those previous works, we
extended the MB-inspired architecture to show more compéhaviors like se-
guence learning. The idea is to demonstrate that the nemuakgres available
in Drosophilaare sufficient to show this kind of behavior, even if such taljig
has not yet been discovered in behavioural experimentspiidposed model and
the obtained results could be the starting point for newdgiclal experiments to
answer to this open question. To name similar situationy, recently the capa-
bility of Drosophila melanogasteio face a Morris water maze-like experiment
was demonstrated and this capability seemed to be out oéliaviour repertoire

until this recent evidence (Foucaatal., 2010).

3. The Mushroom Bodies inDrosophilaas a reference system for sequence

learning

Taking inspiration from insects and in particular fr@msophila melanogaster
we considered the Mushroom Bodies as a multimodal neura¢c&émdamental
to develop a neural structure able to deal with sequenceitear

The Mushroom Bodies are a paired structure of the protocarebmispheres
spreading out in three dimensions. They are next tocQaetral Complexvith-
out known direct connections. In the fruit fly, the most intpot constituents of

the MBs are the 2500 Kenyon cells per side, which run in palréddbm theca-



lyx through thepeduncleand to thelobes(see Fig. 1). The lobes are the output
regions of the MBs, involved in different aspects of the téag process (Junko
et al, 2009). Christiansen and coauthors observed that neunomdobe can
form presynaptic areas that support short and long term mesimilarly to «
and-lobes where the memory is generated, wheréasd3’-lobes are respon-
sible for consolidation of memory (i.e. post-synaptic ajg&hristianseret al.,
2011). There is a prominent olfactory input from the antétoizes into the cal-
ices. Inputs from other sensory modalities are not evidebDrosophilg however
the role of MBs in visually related tasks has been alreadyahetnated (Tang
and Guo, 2001).. Instead in honeybees, MBs receive promingmal (Gronen-
berg and Lopez-Riquelme, 2004), gustatory and mechanoseinput (Schroter,
2003). Furthermore, in flies and bees, the MBs lobe regioaives information
on sugar reward (via octopaminergic neurons) or electociskvia dopaminergic

neurons).
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Figure 1: Block scheme of the structures devoted to odorgasing in insects. Olfactory receptor
neurons (ORN) transfer information to the Antennal Lobek)(Ahe ALs’ activity is transferred
through the Projection Neurons (AL-PN) to the Kenyon C&{l€) in the Mushroom Body (MB)
and to the Lateral Horn (LH) region. The calyx of the MB is th€ kput region for PN odor
information, but KCs have also internal connections. Thaupele of the MB is composed of
KC axons which project into five different lobes: and5-lobe, o’ and 3’-lobe andy-lobe. The
KCs, through axo-axonal connections lead to the formatiospatio-temporal patterns at the
level of the lobes (MB-EN1). Projections from the lobes te #hL would be well suited for
controlling filtering of sensory information there (e.g.pextation driven selective gain control).
MB extrinsic neurons (MB-EN3) coming from the LH are regaitthe MB activity with inhibitory
input to the calyx. Octopaminergic Neurons (OAN) mediate timconditioned stimulus in the
reward processing, whereas dopaminergic Neurons (DAN)iplportant roles in the acquisition
of aversive and appetitive olfactory memory. 1‘Ia1e Premotaah of the insect brain are modulated

by the MBs, but direct neuronal connections are still unknéwenaet al. (2013).



The mostly studied function handled by MBs is related toaitfay learning.
Analyzing the flow of information between the different nglsenters, it is possi-
ble to investigate the learning mechanisms involved inghigess. In vertebrates
the olfactory bulb is a layer in between the sensory neurndgfze olfactory cor-
tex. In insects the Antennal lobes interconnect the seriagey with the MBs, the
structure responsible for the memory formation and redtié@@lennet al., 2007).

In Drosophila melanogastethere are different types of olfactory sensing neu-
rons that can be combined to define the features (e.g. odoyangonents) of the
source that provides the stimuli.

The antennal lobes (ALSs) are the first neuropile encounterdide olfactory
path. ALs consist of glomeruli linked to olfactory rece@dnat transfer informa-
tion, through projection neurons (PNs), to the protocexkedreas (Stockest al,,
1990). The connection with the MB cells is sparse, allowingaplosion in di-
mensionality needed to improve the representation spaeaif@t al., 2007). At
the same time PNs are connected to the Lateral Horn (LH)thétits, after a de-
lay, the activity of the MBs neuron. This inhibitory effea@fhbeen experimentally
found in locusts where the time constant is around 50 ms (Koyet al., 2003);
similar detailed information oDrosophilaare still under studies. Therefore the
Kenyon Cells (KCs) in the MBs receive a sequence of exciyaaoid inhibitory
waves from the PNs and LH respectively. The distance betwserconsecu-
tive waves defines the time window used for information psso®y through the
maintained spiking activity in the KCs (Gupta and Stopf&12). This evidence
guided the choice to define an event driven mechanism todritige sequential
stimuli provided to the system during the learning process.

Axo-axonal connections among the KCs have been identified f1B-EN1

11



in Fig. 1); hypotheses on the role of these connections ifditmeation of spatio-
temporal patterns were formulated to modelling complexhpieena like thele-
layed match-to-sampleresent in bees. These are able to elaborate concept like
sameness and difference between objects whereas thislggpsistill under in-
vestigation inDrosophila(Arenaet al., 2013).

Each neuron within the lattice in the ALs codifies an odorambponent con-
sidered here as a feature of an abstract object. The leam&gpanism is based
on Spike-Timing-Dependent Plasticity (STDP) both inside AL lattice and for
the outer connections.

The basic neural elements needed to show complex sequancmtgabilities

identified in the fruit fly brain are here summarized:

1. the presence of a basic but efficient neural circuit (thesMigsponsible
for multiple learning processes (e.g. olfactory learniatjention, adaptive
termination and others);

2. the presence of different lobes, within the MBs, with fleedard and feed-
back loops able to encode time dependent signals;

3. the presence of axo-axonal connections in the KCs, wlaolbe modelled
as generating reaction diffusion phenomena, useful taesgece-time re-
lations between events;

4. the presence of dopaminargic/octopaminergic extrimsizons involved in
reward based learning;

5. the presence of feedback loops: feedback in generalesiplemory which

is the basis of any complex behavior.

ThereforeDrosophila melanogastaran be considered as a model organism, that

can offer a simple but efficient way to discover the neuraidafsthe complex ca-
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pabilities encountered in bigger brains. Dnosophila melanogastemuch more
is known about structure and function than in other insekésees. These show
sequence learning with a brain one order of magnitude latger the fly one.
Starting from this basic structure it can be possible to esklinteresting behav-
iors that could finally be discovered also in the fly.

The MBs neuropile contains a larger number of neurons andestions than
the developed functional computational model. It is in meages still beyond the
actual neurobiological knowledge to identify which neunothe MBs is respon-
sible for what. We decided to extract the known informatitowet topological
connections among the different areas involved in the dened processes (e.g.
the Antennal lobes, the Lateral Horn, etc.) to develop achamidel. The net-
work contains a minimal number of neurons able to show thenieg skills and
behavioural responses as in the biological case of thetinsegel organism. Ba-
sically we are trying to identify the core of the structurattban be enlarged in
terms of number of neurons and connections if we need to tlo®sietwork capa-
bilities in terms of number of classes or sequence deptts Sd@led-down model
is also needed to reduce the computational time for the ingiteation on robotic
platforms.

Time encoding is an important element in learning tempovehts and has
been investigated both in mammals and in insects. Theretadees that try to
perform a parallelism between the Hippocampus/Cerebedindithe Mushroom
bodies from several sides, both anatomical and functiofatris, 2011). It is
also well known that cerebellum has a role in motor sequesasing (Buono-
mano and Mauk, 1994) together with other brain structukesthe supplementary

motor area in the cerebral cortex as experimentally fourtimates (Tanji and
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Shima, 1994). Furthermore, for example, the studies ofémstuand co-authors on
the olfactory processing in Locusts (Wehr and Laurent, 1@8@ohasise the role
of time. One of the key elements underlined there, was ta¢titoding of com-
plex natural stimuli such as odors may involve a temporaheld, i.e. the precise
timing of neuron activity. All these results were exploite@dour model, where
the olfactory system and neural circuits are used as a bagate to produce a
series of behaviours, and in addition, to map time into a efhstributed struc-
ture to face with sequence learning. The proposed modetisfibre the results of
known facts in insect neurodynamics and of some hypotheséseir role in the

processing of time related event®rosophila melanogastdsrain has all the in-
gredients to solve the problem, even if, either for the lackuitable experiments,
or for the missing development of suitable readout mapssibriin, such capa-
bilities have not yet been discovered or shown. In one or theracase, owing to
structural and functional facts, we can state that MBs amrizpt candidate to be

involved in this spatio-temporal learning process.

4. MB-inspired computational model

In this section the computational model of the MB-inspiredhétecture is
described in details, starting from the neuron level anavgrg up presenting the
different layers, communication paths and learning meishas involved in the

whole structure.

4.1. Neural model

The spiking network used to model the neuropiles of the ineain previ-
ously introduced is based on Izhikevich spiking neurongpgsed in 1zhikevich

(2004). This neural model is well known in literature anceo$f many advantages
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from the computational point of view. It is represented by tbilowing differen-

tial equations:

o = 0.040% + 5v + 140 —u + [
1)

= a(bv — u)

with the spike-resetting

: V4
if v>0.03, then (2)

u<+—u+d

wherev is the membrane potential of the neurans a recovery variable antis
the synaptic current. The values used for the parametedifegeent between the
ALs and MBs. In the first case a Tonic Spiking model has beed udeereas to
model the KCs the parameters have been optimized to guarantefficient and
robust clustering formation capability. Moreover for thedEheuron used to detect
the end of the sequence in absence of inputs in the AL, thditidn induced
spiking model has been considered. Neurons are connecataagth synapses.
The synaptic model transforms the spiking dynamics of tleegynaptic neuron
into a current that excites the post-synaptic one. The madlieal response of

the synapses to a pre-synaptic spike is ruled by the follgwguation:

GWt/Teyn —t/Teun), 1T t>0
g(t): ./Ty eXp( /Ty) (3)
0, if t<0

wheret is the time lasted from the emitted spikejs the time constant; is a
gain factor and/V is the efficiency of the synapse. This last parameter can be

modulated through experience. The Spike-Timing DepenBéatgticity (STDP)
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can reproduce Hebbian learning in biological neural netag¢8onget al., 2000;
Song and Abbott, 2001). The algorithm works on the synapgigiits, modifying
them according to the temporal sequence of occurring spikes updating rule

can be expressed by the following formula:

AT exp (At/t1), if At<0
AW =
—A-exp (=At/T7), if At>0

(4)

whereAt is the time delay between pre and post synaptic spikes. snthy the
synapse is reinforced if the pre-synaptic spike happernsrédhe post-synaptic
one, it is weakened in the opposite situation. Parameteendr_ represent the
slope of exponential functions, while positive constafitsand A~ represent the
maximum variation of the synaptic weight. Interesting aggilons of this learn-
ing paradigm to biorobotics, together with details on theapeeters, are reported
in Arenaet al.(2009a); Arena and Patané (2009b).

Another characteristic of any type of memory, includingussage learning, is
the presence of a decay, i.e. a gradual forgetting of infitomgRubin and Wen-
zel, 1996) that is an essential attribute when dealing wiinging environments.
A decay rate is used, in our model, reducing the synapticteigout 10% each
epoch. Further details and the parameters chosen in theedmxperiments are

given in Table 1.

4.2. Architecture description

Taking into account the biological key elements that cheraae the MB
structure, we developed a computational model designedrastalayer network
based on spiking neurons. The proposed model, taking ittmuat the morphol-

ogy of the MBs, includes the presence of two distinct laybed take the role of

16



Table 1: Network parameters

Neuron Current

Parameter Value (pA) Description

Lin 40 Input current for the Antennal Lobes

Trew 100 RN input current

Isam 100 SN input current

Time constant

Parameter Value (ms) Description

dt 0.08 Time step

Tsyn 4 Synaptic time constant

TyET_ 0.2 STDP time constant

At=A— 0.025 STDP maximum synaptic variation

Synaptic weights

Parameter Value Description

Weze 10 fixed excitatory weight in thec- / 3-lobes

Winh -10 fixed inhibitory weight in thex- / 3-lobes

Wepe— AL 0 fixed excitatory weight in the Antennal Lobes

Winh— AL -40 fixed inhibitory weight in the Antennal Lobes

Wicop 5 fixed excitatory weight of the feedback synapses betwesn i 3 and thea’-/ 3’-lobes

W, 30 fixed excitatory weight between the Antennal Lobes andthég3-lobes

WAL —to—Inh 30 Synaptic weight of the synapses between the Antennal Anbi¢he interneuron used to stimulate the end neuron
(Inhibitory neuron model)

Wa-/8—to—Context 30 Synaptic weight of the synapses betweendhg-lobes and the Context Layer

Wege—C 11 maximum value of the excitatory weight in the Context Lrafg@ussian shape)

Winh—c -7 fixed inhibitory weight in the Context Layer

Geurrent 1 Gain in the calculation of the current for the synapses

Gap 0.5 Gain in the calculation of the current for the synapseésden thea- / 3-lobes and thex’ -/ 3’ -lobes

Go-B—to—input 2 Gain in the calculation of the current for the STDP synajpsgeen thex- / 3-lobes and the Antennal Lobes

GContext 2 Gain in the calculation of the current for the synapses ®f@bntext Layer

Wo 0.05 initial condition for the synapses subject to learning

wy 8 upper saturation for the synapses subject to learning

w_ 0.05 lower saturation for the synapses subject to learning

Alpersistence 8 Increment/decrement of the- / 3-lobes winning neuron bias current in presence of persisten

Lattice characteristics

Parameter Value Description

nxn 9x9 number of neurons in the- / 3-lobes

m 4 number of different features used in the Antennal Lobes

p 4 number of different values for each feature used in the@mal Lobes

MeXPe 12x12 dimension of the Context Layer

floop 2000Hz Threshold in spiking rate used for the samenesstietec

fend 150Hz Threshold in spiking rate used for the end sequeneetite

Pconn 25% Probability used to create synapses between the Artienines and thex- / 3-lobes

Peonn?2 25% Probability used to create synapses betweenthig3-lobes and the Context Layer

Nl 5 number of neurons considered in a winning cluster

Ny 1 Neighbourhood radius

Time constants

Parameter

Value (time steps)

Description

Ksim

2500

Number of steps in each epoch

17
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Figure 2: Computational model of the MB-inspired netwoitke synapses present inside each
layer are not depicted. The input layer is randomly conrtbaith thea- /8 anda’-/5’-lobes that
are themselves interconnected each other using synapsestsio learning. The conditioning
layer is finally needed to exploit the information embeddedhie lobes, through reward-based

association mechanisms with the motor system.

thea-/ anda’-/5'-lobes. The topology of the two lattices is similar even &yh
fulfill different functions: thea-// layer receives in input the fresh information
from the ALs whereas the’-/5’ layer receives a delayed input that refers to the
previously presented object. The model includes feedbankections between
thea-/3 layer and ALs whereas for th€-/’ only feedforward connections are
present as supported by the biological investigations.

A first scheme of the proposed architecture is reported in ZigThea-/ -
lobes model consists of a lattice ofn neurons where. = 9 in the following
simulations. The chosen dimension is a compromise betweelatger number

of neurons constituting the MBs and the computational tilveg tvas reduced
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Figure 3: Cluster formation in the-/3-lobes. The mean value of the membrane potential in a
window of 300 steps is reported at the beginning of the sitiariga) and at the end (b)-(c). The

whole simulation needs 2500 simulation steps.

without loosing those emergent capabilities we want to $omo

Theo'-/3’-lobes model presents the same characteristics as thepsdait-
tice. Each lattice presents a toroidal shape and synaptivemions link neurons
within the lattice, following the paradigm of local excitat and global inhibi-
tion (Arenaet al,, 2012). The neighbourhood size is set to 1, so each cellesxcit
the 8 neighbouring cells. The connection shape and the waigtnibution allow
the network to create clusters of activities as shown in Bighe formation of a
cluster of activity in thex-/5-lobes neurons is shown in time. Extensive simula-
tions showed that the chosen network size was enough to gieformation of
multiple distinct classes also thanks to the toroidal bampdonditions which fa-
cilitate the spatio-temporal evolution of the neuron attiavoiding singularities
in the boundary of the lattice. The cluster of spiking atyiveven if limited to a
cross-like shape, is enough to discriminate a winner in tbegss.

The presence of a second lobe structure (i/e/ 5’-lobes) allows the forma-
tion of a pattern related to a delayed input that can be coadpaith the cur-

rent one to implement mechanisms like delayed match-tgkaBand expecta-
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tion: these require only a one step memory whereas for niedsifep correlation
another memory structure has to be considered as detail@d.be

The input layer representing a simplified AL, was implemdrteough two
map lattices of neuronsin = 4 represents the number of input features whereas
p = 4 is related to the possible value that each feature can assWwhen an
object is presented, the neurons in the input layer assatiatthe object features
are excited with an external current. The connections batwhe input layer
and the lobes are randomly generated with a fixed probalaihty weight (see
Table 1). Within the input layer there are also internal pges. The different
neurons associated to the same feature inhibit each othdetails this allows
noise due to the presence of multiple objects in the scene fittéred out. At the
same time the different feature classes can excite eacl: atihen an object is
presented, the connections among the neurons associdkedextracted features
are strengthened to store the relation among these chasticiein a detected
object.

The different phases that constitute the process at a gixea of the simula-

tion are here described:

Phase A An input is presented and is used to elicit a cluster indhgs3-lobes.

This phase is completed after 1000 simulation steps.

Phase B The a-/-lobes are subject to both the input stimulus and to the influ-
ences coming from the other layers. A comparison betweemc¢helly
emerged cluster and that one obtained during the previoasepts per-
formed: in this step expectation is formed and/or reinfdr@ration 1000

simulation steps).

20



Phase C Feedback between the /3-lobes anda/-/5'-lobes is activated. De-
pending on the lattice activity in terms of mean frequeniog,gresence of a
matching with the previous object (delayed-match-to-dartgsk) is evalu-

ated (duration 500 simulation steps).

The three phases indicated were used to explain the seqaéneeral pro-
cessing that arise in the architecture after the presentati an external input.
The overall dynamics is generated from the interaction ajrioput driven dy-
namics which generates bumps of neural activation in theddPhase A), and
feedback loops from higher brain areas (Phase B). In our hvegl@ypothesised
also the additional contribution of alpha’-beta’ lobes &uidressing the basis of
the sameness concept (Phase C).

Referring to Fig. 2 the Conditioning layer includes neurcglated to the re-
ward mechanism (RN), to the sameness recognition (SN) ahe faremotor area
(PmN): the network includes both fixed synapses and leagmatts. In details,
the reward neuron receives a fixed current (I.g,,) when an unconditioned re-
warding stimulus occurs; the sameness neuron (SN) simitadeives an input
(Zsam) When then-/ 5-lobes activity is beyond a given frequency threshold (Aren
et al, 2013). Both RN and SN are linked to the Pre-motor neuron (Ptinfdugh
fixed excitatory synapses for RN and via STDP for SN respelstiOther STDP
connections are present between dhgs-lobes and PmN to implement a condi-
tioned learning mechanism. The response of the input lafter, the presentation
of an object is shown in Fig. 4 (a). As can be noticed the reizeghobject
contains features that excite the second neuron of the ficssacond row of the
lattice, whereas the other two characteristics are notel&fifhe inhibitory mech-

anism is visible for instance in the first row, were the winneuron suppress the
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activity of the others. As illustrated in Fig. 2 another sksynapses were intro-
duced between the-/3-lobes and the input layer. Their role is to associate that
specific object featured in the input layer to a cluster fatrivethe a-/5-lobes.
This feedback is at the basis of the expectation mechanisitiised in Phase B
above. An example is shown in Fig. 4 where in (a) the inputdagsponse is
shown in presence of object A characterized by two featweperted in the first
two rows; in (b) during the second part of the simulationragtep 1000, the ob-
ject is no longer given to the input and the neurons assattat¢he features of
object A are excited by the feedback synapses froyit-lobes, learned to create
an expectation, in this case for the same object.

Expectation is the capability to predict the next elemepieteling on the last
presented one. This one step memory could not be enoughdandiisate com-
plex sequences: a memory layer, here called Context layrrdHe included.
Experimental results using data from the real-world probidmain demonstrate
that the use of context has three important benefits: (apitgmts destructive in-
terference during learning of multiple overlapping seqemy (b) it enables the
completion of sequences from missing or noisy patterns, (ehd provides a
mechanism to selectively explore the space of learned segaaluring the recall
phase (Berthouze, 2006).

A first attempt to create a Context layer was inspired by thb pdegration
models using the principles of a virtual vectorial sum ongheviously emerged
clusters creating a spatio-temporal map of contexts. Th@elblayer was here
modelled with a pool of independent neurons spatially itisted in a lattice as
schematically shown in Fig. 5. The horizontal axis indisdtee time evolution

whereas the vertical axis represents the internal statggesee, forming the con-
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Figure 4: Membrane potential evolution in the input layes) The object A, characterized by
two features f; » andfs o) is presented to the network, (b) when the input is no longevided,
the feedback synapses coming from the lobes create an atpeatffect depolarizing the input

neurons depending on the features of the expected object.
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Figure 5: Block scheme of the MB-inspired computational eladth the inclusion of the Con-
text layer where the history of the sequence is stored thr@mechanism similar to the path
integration. STDP synapses link the context with the nexstelr in then-/3-lobes and the End

neuron is used to identify the conclusion of a sequence.

text at each time step. The links between the Context layetlaen- / 5-lobes are
obtained through STDP synapses: each neuron of the Coaiettis connected
to each neuron in the- / 5-lobes. These synapses are activated using a conditional
gating mechanism, only during the second phase (i.e. PhasktiBe simulation.

Fig. 6 shows the trend of the synaptic weights connectingctireext layer
with one generic neuron of the /5-lobes. A cross-like pattern of neurons active
beyond a given spike rate threshold is formed in the Conteperl to maintain

the history of the previous events: the synapses connetitemgneuron pattern
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Figure 6: Trend of the synaptic weights between the Conssdrland one neuron in the /3-
lobes that is part of a winning cluster associated to an objeluded in two different positions in
the sequence that has been presented ten times to be ledheethrgest weight is associated to
the central neuron of the winning cluster whereas the othierselated to the four neurons with

neighbourhood one.

formed in the Context layer to the winning cluster in the/5-lobes emerging
in the following input presentation are strengthened tglo8TDP. The cluster
shape depends on the lattice size and neighbourhood ra@iseriments with
different size and radius (e.g. lattice 20x20 with neightood radius Nr=2) were
performed obtaining comparable functional results. Fes¢hreasons, to reduce
the processing time for robot experiments, we preferredottsicler a minimal
number of neurons (i.e. 9x9 lattice).

The cross-like cluster in the Context layer will be reduced tsingle active
neuron in the successive implementation of the model adeifiresented below.

Another important element introduced in the architectsreheEnd Neuron
(EndN in Fig. 5) used to introduce the information about tegth of the se-
guence during the learning phase. In the testing phase titextas reset when
the End neuron is activated by the Context layer.

Two possible strategies were used to activate the End Nelitenfirst was to
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associate it to a reward event that can elicit the EndN amdutih STDP learning,
relate the last activated element of the Context with theadride sequence. The
second strategy includes an indirect connection betweeinibut layer and the
EndN through an inhibition induced spiking neuron: in thigywt is possible to
stimulate the EndN when no further inputs are provided taystem, in a defined
time window, during the sequence learning process. In asg,cahenever a
cluster in the lobes arises, either for the effect of an ispyrial or for the feedback
contribution descending from the Context Layer, the Endilisbited (see Fig.
8). For instance, if the sequence ABC is stored in the systeenC element will
stimulate the EndN. If a new Sequence ABCDE is also storeslpthsentation
of the third element C of the sequence will stimulate the EhdiNconcurrently
will still stimulate also the arousal of a cluster in the/ 5-lobes as a predictor of
the fourth element D. In our model, the presence of this @gtoluster strongly
inhibits the EndN, allowing the reconstruction of the longequence ABCDE.
This inhibition could be more graceful, allowing a competit In this case the
activation of the EndN will depend on the number of preséonat of the two
sequences.

More in details, the development of the Context follows naasbms typical of
the reaction-diffusion processes. In particular th¢s-lobes are randomly con-
nected to the Context layer. This is composed by groups abmsttopologically
organized in lines. This topology resembles not only theviilse arrangements
on the MB fibers, but also recalls the granulate cells in thelzdlum that are re-
sponsible for encoding, not only a pattern of activatiohaft(tdentifies the unique
input pattern), but also the time elapsed from the onseteoirthut pattern, creat-

ing a context that is then used by the Purkinje cell to gerdfat corresponding
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output response (Buonomano and Mauk, 1994).

Functionally, the context formation process in schembyickepicted in Fig.

7. It starts when the first presented input generates a wgnelurster in then-
/3-lobes, say at time, : the lobes randomly excite the Context layer. At this
time only the first column of context neuronSdl;,) is receptive and through a
winner-takes-all strategy one neuron emerges over thesotiserepresentative for
the current state. After a resetting due to the Lateral Hamew presented ele-
ment (at timet;) generates a second cluster in the lobes that randomlyesxtie
Context layer(Col;,). Here in the mean time, the previous winne€iol,, already
started to diffuse with a gaussian shape towardg, in the context layer. The
interaction between these two mechanisms allows the clobiaesecond winner
neuron inC'ol;, of th Context, that is related to the history of the previgysie-
sented elements. All the neurons in the context are magsieainected with the
a-/-lobes with synapses subject to the STDP learning. Thexdfer synapses
connecting the active neurondvl,, that generates the diffusion process, and the
current winner in thex-//-lobes are strengthened. After multiple presentations
of the same sequence, the synapses between the Contexanalérien-/5-lobes

are strong enough to allow the reconstruction of a learngdesee in the re-
call/testing phase.

Terms like Learning and Testing are here used to distingwishdifferent
times of the system processing. Of course it is not the caseairlife scenarios,
but in biological experiments performed in lab often thetpecol used follows this
artificial distinction. However we considered a continutaening process were
the synaptic connections are strengthened or weakeneddaugdo the neuron

activity. The process of learning is therefore incremeatad we do not need to
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Figure 7: Scheme of the activation mechanisms triggereldarContext layer. The first winning
cluster in then-/ 8-lobes excites the first column in the context where a winiakes-all topology
allows the choice of a representative neuron that start ffasdi exciting the second group of
neurons. When the second presented element is classifibé in t3-lobes, the new stimulus
provided to the context is shaped by the diffusion to deteemai second neuron in the context that

takes care of the previously elements of the presented seque

make a sharp distinction between learning and test. Catad@n arises from the
multiple presentations of specific sequences that will &ssically discriminated

from other considered irrelevant.

5. Network applications

To summarize the capabilities of the developed architectait the different
behaviours that can arise from this unique structure asshofig. 8 are outlined
in Table 2.
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Figure 8: Scheme of the complete architecture where theaictien among the different neural

structures is depicted.

In details, starting from the basic capabilities of the sgstthe persistence
/distraction mechanisms can be identified. The wild-tymeat shows the ca-
pability to focus on a target avoiding flickering behavioattttan be caused by
the presence of distracters. As shown in several expergwettt theDrosophila
melanogasteMB-defective mutant flies loose this capability, continsly switch-
ing the target of interest with a considerable waste of gndrgoking at the pro-
posed model, this attentional capability is assured by tiesgnce of feedback
connections which produce a memory effect at the level oki@is in thea-/3-
lobes. If such links are suppressed, we can replicate thétsesbtained with the

mutant animal.

29



Behaviours Neural Structures involved Plasticity

Persistence Antennal Lobe (AL) (1) STDP froma-/3-lobes to AL
«-/3-lobes (2) Memory effect in thex-/3-lobes
Distraction Antennal Lobe (AL) (1) STDP froma-/3-lobes to AL
«a-/3-lobes (2) No memory effect in thex-/3-lobes
Delayed match-to-sample Antennal Lobe (AL) (1) STDP froma-/3-lobes to AL
«-/3-lobes (2) Feedback synapses fram/3-lobes
o'~/ 3'-lobes to o'~/ 3'-lobes lobes and viceversa
Sameness Neuron (3) Activity Detection by the Sameness Neurgn
Expectation Antennal Lobe (AL) (1) STDP between one feature to
«-/3-lobes other features within the AL
Context layer (2) STDP Fromu-/3-lobes to AL
(3) STDP from Contex Layer ta.-/3-lobes
Sequence Learning Antennal Lobe (AL) (1) STDP Fromu-/3-lobes to AL
«-/3-lobes (2) STDP from Contex Layer ta-/3-lobes
Contex Layer (3) STDP from Contex Layer to Output Layer|
Output Layer (4) STDP froma-/3-lobes to Output Layer

Table 2: Different behaviors that can be shown by the progh@sehitecture. For each behavior

the relevant neural structures involved are reported tagetith the elements subject to learning.

The persistence behaviour, typical of wild-type fly, can &eroduced in the
architecture as reported in Fig. 9 where the trend of thaspiiate in the winning
neurons of thex-/3-lobes is analyzed. After multiple presentations of object
a distracter B is presented but the system persists on thipssobject thanks to
the contribution of thev-/3-lobes layer which produces a kind of integral effect.
A fading memory takes place and only after a significant nurobpresentations
of the same object B (this number can be tuned in the modeldhesponding
cluster will win and the system will loose persistence oreobA. This behaviour
coexists in the same neural structure with the other netwaplabilities.

In experiments involving MB-defective mutant flies, thegpstence behaviour
disappears and a continuous switching toward the currgmédgented object is
observed. This defect can be reproduced cancelling thébdeidcontribution

from thea-/3-lobes to the AL layer, obtaining the behaviour shown in Hi@. It
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Figure 9: Trends of the spiking rate in/3-lobes during the different epochs when a sequence
of 20 object is presented. (a) Spiking rate of the winningrarun thea-/S-lobes after 11 pre-
sentations of object A; (b) at step 12 a new input B is preskre easily visible in Phase A (first
1000 simulation steps). After the MB contribution whichsaat an integration effect in Phase B,
the network persists in following the object A. (c) At steptt6 strength in following A decreases

and finally (d) at step 18 the system follows the new input B.

31



depicts the spiking rate for the winning neuron during théaving between two

different presented objects.

ssssssssssssss

(@) (b)

Figure 10: Distraction simulations: trends of the spikiaterina-/S-lobes during the different
epochs when a sequence of 20 objects is presented. (a) pstanof the winning neuron in the
a-/(-lobes after 11 presentations of object A, (b) at 12 stepsiaimgut B is presented and the

system is immediately distracted and follows the new object

Another interesting capability consists in solving theageld match-to-sample
task. As illustrated in details in Arere al. (2013), the introduction of the’-/5’-
lobes in the architecture allows to identify the presencevofsuccessive presen-
tations of the same element through the detection of anaseréhen-/5-lobes
frequency activity as shown in Fig. 11. The acquired infdioracan be also
used to elicit, after conditioning, a behavior that can ggered by a matching
detection.

The potentialities of the developed MB-inspired architeetare here increased
with the introduction of the Context layer that could be tetbto they-lobe. This
layer, as previously discussed, is used to store informadimout the chain of
events previously acquired by the system. Exploiting tligability, the struc-

ture is able to extract information about the neurally emcbdausality between
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Figure 11: Effect of a delayed-match to sample in the spikatg of the winning neuron. The
comparison between the behavior of the winning neuron iemtEs and in presence of a match is

reported.

consecutively presented objects, to create expectatiotiseosuccessive presen-
tation (Arenaet al, 2012). The presence of a Context layer allows to perform
not only one-step predictions but also to reproduce se@senicobjects, solving
also potential ambiguities, exploiting information on tentext of each object.
The Context layer is arranged in a toroidal shape thus impgothe length of
sequences that can be memorized. At the same time that atbolesp in the
lattice. This solution can creates ambiguities justifiedthy actual size of the
context memory and can be improved increasing the dimemdithre lattice.

Finally either rewarding or punishing signals can be asdedito the ending
element of a sequence and this information can be used teelloe most reward-
ing sequence to be followed when different choices are gemlito the system.

To illustrate the activity of the architecture during thegentation of a com-
plex sequence, the result of a simulation is shown in Fig.He&xe the sequence

ABCBCC is provided as input and triggers the activity of the diffdgrprocess-
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Figure 12: Behavior of the network when a sequence of objsqtsovided in input to the AL
(input) layer (i.e. ABCBCC). The activity of the AL layer isported in the first row, the emerged
cluster in then-/3-lobes and the activity in the Context layer are depictedengecond and last
row, respectively. The colours indicate the average mengpmtential in mV evaluated in the
last 200 steps of the simulation. In the last row both thea@ativation coming from the-/3-
lobes and the context neuron performing the diffusion pgs@ge shown. The features associated

to each object are: A1, fo1, f31); B(f21, f22, f32); C(fis, f23, f33)- An absence of any input

stimuli represents the end of the sequence: this is recediy the End neuron.

ing layers in the MB-inspired model. It can be noticed thatsequence presents
multiple ambiguous elements that could not be correctldipted using a simple
one-step-ahead expectation mechanism. The role of theedayer is crucial to
correctly recognize, learn and reproduce this complexeacg!

Moreover to generalize the results also with larger lastidtee same simula-
tion was performed changing tlhe /5-lobes to 820220 lattice of neurons with a
neighbourhood radiud, = 2, as shown in Fig. 13. The emerged clusters are very
robust to noise, involve more neurons and generate a diffetein of activation

in the Context layer that however is uniquely associatetégtesented sequence
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Figure 13: Behavior of the network obtained with the sameugatf Fig. 12 when the-/3-lobes
size is 20x20 instead of 9x9 and the neighbourhood size ist2an of 1. The input are the same
therefore the AL layer activity is identical to the previaase; the cluster generated in the 5-
lobes are larger and smoother with respect to the smalledattice and the sequence is stored in

the Context layer in a different neuron chain.

of elements. The presence of a repetition in the sequenedash part contains
two consecutivé€’ symbols) modifies the activity of the-/ 5-lobes increasing the

average spiking rate due to the positive feedback wittuthgs’-lobes.

5.1. Robotic experiments

To evaluate the performance of the designed architectuseries of experi-
ments were carried out with a roving platform.

Even if the most suited robotic architecture should havenlzeéegged ma-
chine, for which sophisticated controllers were alreadyettgped (Arenzet al.,
2003, 2005), the simpler mechanical structure of a wheelatilopm was here
preferred to focus attention on the architecture developed

The selected robot is equipped with a on-board PC that conuanes with a
series of micro-controller-based boards used for the noaintrol. Moreover two

ultrasound sensors are used to detect obstacles and ani@utiithal camera is
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included to identify the presence of specific shapes in thver@mment used as
objects of interest.

We considered the following time windows for each part of finecessing
and execution stages: (a) Sensory information gatheringg {lee time needed to
acquire the panoramic image and extract the relevant abjet¢he scene). This
time is software/hardware dependent; (b) the network pex$ahe 2500 steps of
elaboration (200ms of simulation that correspond to a fevosds in the actual
robot setup, depending on the data logging) using the gadsEmsory input even
if no objects are present in the scene; (c) depending on tteeneldl results an
action/behaviour is performed. (d) The robot is able to qrenf again the step
(a) repeating the procedure. Following this structure & nbjects have to be
present at step (d). Basically the assumption is that therescperformed by the
robot are relevant for the next object presentation as génuypical experimental
set-up (e.g. multiple T-maze experiment) so when the beliavé completed we
can look for other information in the scene.

The first proposed experiment is directly related to theiptnsce behavior as
shown in Fig. 14. The robot is attracted by the objects showthe monitors
placed in an arena and is able either to filter out the digraldte in the wild-type
insect, or to switch among the presented objects, like itMBedefective case as
reported in Fig. 15.

Experiments with sequences where some objects are misswighanultiple
objects presented simultaneously were performed to ealhia capability of the
system to reproduce an already learned sequence. If art abjeissing, the input
layer is not stimulated by exogenous inputs, but thankseddlbdback connec-

tions coming from the Context layer, a cluster can be elicitecover the gap in
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Figure 14: Persistence experiment with a roving robot.e€ltayry followed by the robot during the
experiment. The images acquired from the on-board fish-ageca are shown in three different
steps. The robot is able to persist moving in the directiotnefinverted T also when a distracter
is presented (i.e. the circle). After multiple presentagiche memory associated to the inverted T

fades down and the robot follows the circle.

the sequence. Similarly when multiple objects are simelbaisly present, both
the filtering mechanisms at the input level and the effechefdontext (that con-
currently guides the cluster formation) allow the emergevfcthe correct element
stored in the learned sequences. An experiment relatedjteesee learning was
performed with the roving robot in the arena reported in B@. The learned se-
guence was presented about ten times to allow a stablegtonnemory encoded
in the synaptic weights of the network. During the recallgghthe robot received

visual stimuli from the two monitors placed in the opposities of the arena and,

37



S
d

presentEDOB): L11..1 00..00@

FOLLOWED OBJ:

Figure 15: Distraction experiment with a rover. The preatonh of a new object at step 12 is
enough to change the robot behavior independently of the/¢éinergy already invested in follow-

ing the previous target.

depending on the learned sequence, it tried to orient teaiel correct element
expected and to approach it. Fig. 16 contains the evolutidheogaze direction
of the robot, even in presence of noisy conditions (i.e. iplatstimuli are simul-
taneously presented to the robot), the system was ablegiodilt the disturbances
and to follow the stored sequence generating, each epacbxgected behaviour.

Multiple sequences can be stored thanks to the effort peaMy the Context
layer to disambiguate the potential overlapping. An exanigpkhown in Fig. 17
where the chain of neurons activated in the Context layedift@rent sequences
is reported with different colored circles: (ABCD, (b) DBCA(c) BBD (d) CCA

It can be noticed that a simple expectation mechanism thkastato account
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only the previous element cannot be used to perform a cqorediction because
elements likeB can be followed by 8, aC or aD.

The learning process generates, after multiple presentabf the four se-
guences, the strengthening of a series of synaptic commsctiom the Context
layer to thea-/5-lobes as shown in Fig. 17. So, if the neuron corresponding to
input A is active in the Context layer, its synapses stineuthe arousal of object
Binthea-// lattice and so on. These synapses contain all the informageded
to autonomously generate the learned sequences when dreefobt elements is
provided in input.

Taking one of the learned sequences as exampleABEDIn Fig. 18 (a) and
DBCAIn Fig. 18 (b)) it is possible to distinguish the path follaay the signals
coming from then-/-lobes to the Context layer. Here, diffusion, matched with
the incoming new clustered input, leads to the emergencewafiaing neuron
in the Context layer, which, in turn, projects back to thedeb This allows to
learn the association between the actual context and tlvessige element in the
sequence.

Looking to this experimental results, an important aspredévant to suggest
new experiments in biology is the co-existance of diffetegtiaviours within the
same neural structure. For instance persistence/disinaoéhaviour is deeply
studied in insects as a stand-alone characteristic buy rareelation with other
behaviours like sequence learning. From our simulation aveidentify that the
two behaviours can co-exists and compete together to detetine system over-
all behaviour. When the same object is presented multiplegj any new one
is filtered (i.e. considered as a distractor), to persishandn-going behaviour.

However the new objects could be part of a long sequence stptation (e.g.
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AAAAAB). Depending on the network parameters the final betiaw can be
tuned accordingly, posing more emphasis on one or the ofeavioural strat-
egy. Focused biological experiments can be designed terheattlerstand mem-

ory/forgetting processes.

5.2. Sensitivity analysis

The network parameters as reported in Table 1 in the papee tueed to
guarantee the co-existence of the different describedvioming in a whole struc-
ture. The reported values are the results of previous wohieseva huge amount of
simulations were performed to numerically identify thettmmfiguration within
a well constrained searching space (Aretal, 2012). Finally an hand-tune
process was actuated to optimize the system for solvingictudl situations. A
sensitivity analysis was performed to underline a seriesspects concerning the
robustness of the network to noise and the role of specifarpeaters in obtaining
the desired expected behaviour provided by the architectur

Concerning the effect of the noise in the system, the rolegstof the network
was evaluated introducing a white noise in the input curoémtach neuron both
in the case of external input and for the current generatdtidogynaptic connec-
tions with other neurons. All the simulations were perfodnaelding a noise that
dynamically changes in each integration step, in a ranges6§. The result is that
all the behaviours are robust to this disturbance; the edfiddbe noise on a neuron
in thea-/5-lobes is shown in Fig. 19. If the level of noise is furtherriesed to
about+20% the clustering capabilities at the level of the/ 5-lobes are reduced
and sometimes completely destroyed, also because we dtmdjrthe simula-
tion windows and, to filter-out the noise, the network needsanprocessing time.

Furthermore, the noise effect is also related to the numigamesentations needed
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for each sequence to be stored in the structure. In factiiegth of the memory
trace should be strong enough to compete with noise coduparon activities
due to the high level of noise.

The behavioural response of the system is also robust t@tiegion of impor-
tant parameters involved in the neural processing. Thear&taontains multiple
synapses with fixed weights, whose values are reported ite TabTo analyse
the robustness of the network behaviours to the selectegva noise of-5%
was included during the creation of the synapses. The adaiesults show that
in most cases the network is solid this disturbance and, évka activity in the
Context layer could change with respect to the default vahe context activa-
tion is robustly associated to a specific sequence, obtathm same behavioural
results. Also in this case a larger level of noise (abi0%) can destroy the
network behaviour. In particular, the activity in the/S-lobes is disturbed and
sometimes the Context layer is not able to guide the arotisiaé@orrect winning
cluster as expected by the learned sequence.

Going deeper into analysing the sensitivity of the networkhe selected pa-
rameters an important aspect is related to the co-existdraiferent behaviours
in the same architecture that needs a balancing betweerathmpters involved.
An interesting example can be found considering the persistbehaviour: when
the same input is the co-existance of these mechanisms dadher refine and
tune the model that now hypothesizes the presence of dyabméchanisms with
different time scales for the repetitively presented tortbevork an integral ef-
fect is generated at the level of the winning cluster neulidre effect is obtained
adding a hyper-polarization current that either increaktse presented object

is equal to the previous one or decreases for the same quattigrwise with
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Alpersistence MaxCP

0 No persistence behavioul
0.5 7

5
10 4
20 3

30 Dominance of persistencg

Table 3: Relation between th®/p...s;sience USed to take care of the persistence effect due to the
presentation of the same element multiple times and thermawrinumber of equal presentations
that can be learned in a sequence before the effect of théstesie will be predominant (i.e.
MaxCP).

an lower limit of 0. This increment/decrement {p., sistence) Was set to 8 in the
proposed experiments but this value can be changed to egtiece or increase
the strength of the persistence behaviour versus the etgeusequence learning
mechanism. The selected value allows a predominance ofxihectation over
the persistence if the number of consecutive presentatibtiee same symbol is
less than 6, otherwise the system will prefer to persist engtevious object in-
stead of following the indication coming from the Contextdathat will lose the
competition to generate the expected winning cluster. Tumeearical analysis of
this competition between behaviours is reported in Tablen8rev changing the
Alpersistence from 0 to 30 itis possible to obtain either a complete absehper-
sistence behaviour or a complete dominance of the persesteghaviour on the
sequence generation.

The last element taken into consideration for the analgdise balancing be-
tween the synaptic weights from/-lobes to the Context layer and the exci-
tatory/inhibitory connections in the Context layer. Then@xt layer is the key
element for the storing and further generation of sequentiesa-/3-lobes are

connected to each column of the Context layer with a prolalf 25% and a

42



weight Wo./3_to—contezt = 30. The diffusion process in the Context layer that
transfers the information in time from one column to the rax¢, is controlled
by a series of synaptic connections with a Gaussian distoibéor the weight (the
gainis 11 and the standard deviation is 2). The ratio betileese two classes of
weights is a critical parameter to be defined. In Table 4 andesias of configura-
tions has been tested and the behaviour of the network hasevatiated. It can
be noticed that the network dynamics is very robust to a paranvariation if the
ratio between the synaptic weights is maintained withinréage range. Critical
situations can be identified when the strength of the diffusffect (Vg.._c) is
too strong with respect to the new stimuli coming fromdhggs-lobes; in this case
the new winning cluster in the lobes is irrelevant becauseGbntext activation
always degenerates into the same row of winning neuronslédde 4).

Another problem was identified when the spiking activitylod Context neu-
rons is reduced due to the small value for thg. 5_;,—contezt SO the synapses
Weonteat—to—a-/8, Updated through STDP, grow slowly. In this case, to obtain a
robust storage for a sequence, the number of presentat@ued should be in-
creased. Moreover the correct balance between excitataryndibitory mecha-
nisms is crucial for the system. In fact, as reported in Tabilehen the inhibitory
effect is not well balanced, the network activity is complgtdestroyed and it is

not possible to find a winning neuron in the Context layer.

6. Conclusions

The ability to understand the environment is a dynamic gecdhe context
in which events occur can be even more important than thetevlemselves.

On the basis of the biological evidences concerning inssgalaility to learn se-
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Wa-/8—to—Contezt | WEzc—C Ratio | Behaviours
30 11 2.72 4
15 55 2.72 4
60 22 2.72 v
60 11 5.44 VA
30 55 5.44 v
15 11 1.36 4
30 55 1.36 v
90 11 8.16 v
30 3.66 8.16 4
10 11 0.90 ContDeg
30 33 0.90 ContDeg
30 30 1 ContDeg
11 11 1 ContDeg

Table 4: Robustness of the network behaviours when the signaeights involving the Context
layer Wa.,5—to—conteat @aNdWg,.c) are modified. All the network functionalities are main-
tained in most of the cases, the first row represents the efanfiguration, except when the
strength of the diffusion effect{z..._¢) is too high and the new winning cluster is irrelevant: the

Context activation always degenerate into a row of winniagrons (ContDeg).

guences and the identification of candidate neural strestiasponsible for these
processes, in this work a new model for sequence represemégatd learning, in-
spired by the Mushroom Bodies structure, is proposed. Téea veas to include
in the same architecture a series of functionalities thatnfbiological experi-
ments, can be associated to MBs. Starting from basic capedbiike attention,
expectation and others, the model was extended to inclupeesee learning that
is a fundamental process shown also by insects. In this pligeshown that the
basic neural circuits and learning functions needed fousece learning are in-
deed contained in thBrosophila melanogastdsrain. The results suggest to try
to find new experiments where these capabilities shoulébetherge. Therefore,
during the modelling phase, several hypotheses were fohto take care of the
still unknown biological information and the obtained riégsgan be of interest in

order to further assess future experiments on the inseavimirs. Simulation

44



Wa-/8—to—Contest Winh—cC Ratio | Behaviours
30 -7 4.28 Vv
60 -14 4.28 Vv
15 -35 4.28 v
60 -7 8.56 Vv
30 -3.5 8.56 Vv
15 -7 214 Vv
30 -14 2.14 Vv
90 -7 12.84 v
30 -2.33 12.84 Vv
10 -7 1.42 Py
30 -21 1.42 v
7.5 -7 1.07 Vv
30 -28 1.07 Py

Table 5: Robustness of the network behaviours when the fgnapights involving the Con-
text layer Wa./3—to—contest @Nd Winn_c) are modified. All the network functionalities are
maintained in many configurations for the weights, the fiost represents the default case. The
problem identified areP; - the spiking activity of the Context neurons is reduced dubé small
value for theW,,./s_io—contest SO the learnable synapsé&€.o, cxt—to—a-/3), Updated through
STDP, grow slowly and, to obtain a robust storage for a secpiethe number of presentations
needed should be increasd®; - when the inhibitory effect is too strong, the network aityivs

destroyed and it is not possible to find a winning neuron inCbatext layer.
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and experimental results demonstrate the effectivenesgseqiroposed architec-
ture that represents a key element for the development afnplete insect brain

computational model.

Acknowledgement

This work was supported by EU Project EMICAB, grant no. 27D53d
the MIUR project CLARA (CLoud plAtform and smart undergralimaging for

natural Risk Assessment).

References

Anderson, M. L. (2010). Neural reuse: a fundamental orgditnal principle of
the brain.Behav. Brain Scj.33(4), 245-266.

Arena, P. and Patang, L. (2009&patial Temporal Patterns for Action-Oriented
Perception in Roving RobatSpringer, Series: Cognitive Systems Monographs,
\Vol. 1.

Arena, P. and Patané, L. (2009b). Simple sensors proviggsrfor cognitive

robots.|IEEE Instrumentation and Measurement Magazif3), 13-20.

Arena, P. and Patané, L. (20143patial Temporal Patterns for Action-Oriented
Perception in Roving Robots II: an insect brain computagionodel Springer,

Series: Cognitive Systems Monographs, Vol. 21.

Arena, P., Fortuna, L., Frasca, M., Patang, L., Vagliasidd(2005). CPG-MTA
implementation for locomotion control. MEEE International Symposium on

Circuits and Systemgages 4102—-4105.

46



Arena, P., Fortuna, L., Frasca, M., and Patanég, L. (2008ns&y feedback in
CNN-based central pattern generatdrgernational journal of neural systems
13(6), 469-478.

Arena, P., Fortuna, L., Lombardo, D., and Patang, L. (20@8jception for action:
Dynamic spatiotemporal patterns applied on a roving rolhdaptive Behavigr
16(2-3) 104-121.

Arena, P., De Fiore, S., Patang, L., Pollino, M., and Vemt@. (2009a). STDP-
based behavior learning on TriBot robot. Pnoceedings of SPIE - The Inter-

national Society for Optical Engineeringrt. no. 736506.

Arena, P., Fortuna, L., Lombardo, D., Patang, L., and \delaM.G. (2009b). The
winnerless competition paradigm in cellular nonlineamweks: Models and
applications.International Journal of Circuit Theory and Applicatior7(4),
505-528.

Arena, P., Patang, L., and Termini, P. (2011). Decisioningagrocesses in the
fruit fly: a computational model. Idrrontiers in Atrtificial Intelligence and
Applications - Proceedings of the 21st Italian Workshop ennd] Netsvolume
234, pages 284-291, Seville, Spain.

Arena, P., Patané, L., and Termini, P. (2012). Learningeetgiion in insects:
a recurrent spiking neural model for spatio-temporal regnéation. Neural
Networks 32, 35-45.

Arena, P., Stornanti, V., Termini, P., Zaepf, B., and Stsal&s (2013). Modeling
the insect mushroom bodies: Application to a delayed madedample task.
Neural Networks41(), 202—211.

47



Berthouze, L.; Tijsseling, A. (2006). A neural model for text dependent se-
quence learningNeural Process. Lett23(1), 27-45.

Billard, A. and Hayes, G. (1999). DRAMA, a Connectionist Aitecture for
Control and Learning in Autonomous Robo#sdaptive Behaviqr7(1), 35-63.

Buonomano, D. V. and Mauk, M. D. (1994). Neural network maafehe cere-
bellum: Temporal discrimination and the timing of motorgesses. Neural
Comput, 6(1), 38-55.

Chameron, S., Schatz, B., Pastergue-Ruiz, |., Beugnoan@.Collett, T. (1998).
The learning of a sequence of visual patterns by the ant lgataig cursor.
Proc. R. Soc. Lond. B65 2309-2313.

Christiansen, F., Zube, C., Andlauder, T., Wichmann, Cd &ouquet, W.
(2011). Presynapses in kenyon cell dendrites in the mushimmly calyx of

drosophila.The Journal of Neurosciencpage 9696.

Collett, T., Fry, S., and Wehner, R. (1993). Sequence lagrhy honeybees].
Comp. Physiol. A172, 693—706.

de Ibarra, O., Howard, L., and Collett, T. (2011). Do woodsdetirn sequences
of visual stimuli? The Journal of Experimental Biolog214, 2739-2748.

Elman, J. L. (1990). Finding structure in tim&ognit. Sci, 14, 179-211.

Farris, S. M. (2011). Are mushroom bodies cerebellum-litkecsures?Arthropod
Struct DevV, 40(4), 368—-379.

48



Foucaud, J., Burns, J.G., and Mery, F. (2010). Use of Spkfaimation and
Search Strategies in a Water Maze Analod@nosophila melanogastePLoS
ONE, 5(12)

Freeman, W. J. (1987). Simulation of chaotic EEG patteris avdynamic model
of the olfactory systemBiol. Cybern, 56, 139-150.

Freeman, W. J. (2004). How and why brains create meaning $eamsory infor-

mation. International Journal of Bifurcation and Chap$4(2).

Glenn, C., Maxim, B., and Gilles, L. (2007). Olfactory repeatations by

drosophila mushroom body neurodaurnal of neurophysiologyage 734.

Gronenberg, W. and Lopez-Riquelme, G. (2004). Multisepsonvergence in
the mushroom bodies of ants and be&sta. Biol. Hung. 55, 31-37.

Gupta, N. and Stopfer, M. (2012). Functional analysis ofgnér olfactory center,

the lateral hornThe Journal of Neurosciencpage 8138.

Harter, D. and Kozma, R. (2005). Chaotic neurodynamicsuditsraomous agents.
IEEE Trans. Neural Netwl16(3), 565-579.

Heinrich, B. (1976). Foraging specializations of indivadlloumblebees.Ecol
Monogr, 46, 105-128.

Huerta, R.N.; Nowotny, T. (2009). Fast and robust learniggdinforcement
signals: Explorations in the insect braideural Computation21, 2123-2151.

Izhikevich, E. M. (2004). Which model to use for corticalldpg neuronsNeu-
ral Networks, IEEE Transactions ph5(5), 1063—-1070.

49



Janzen, D. (1971). Euglossine bees as long-distance gligof tropical plants.
Sciencel71, 203-205.

Janzen, D. (1971). Serial Order: A Parallel Distributedcessing ApproacHCS
Report 8604, Inst. Cognit. Sci., University of California®iego

Junko, K., Hiroshi, I., and Toshihiro, K. (2009). Neuronachanisms of learning
and memory revealed by spatial and temporal suppressioewbtransmis-
sion using shibire, a temperature-sensitive dynamin niggamne in drosophila

melanogastemMolecular Neurosciencgages 1-4.

Liu, X. and Davis, R. (2006). Insect olfactory memory in tigued spaceCurr.
Opin. Neurobiol, 6, 679—-685.

Macquart, D., Latil, G., and Beugnon, G. (2008). Sensoranséquence learning

in the ant gigantiops destructgknimal Behaviouy75, 1693—-1701.

Manning, A. (1956). Some aspects of the foraging behaviduumblebees.
Behaviour 9, 164 — 201.

May, R. and Wellman, A. (1968). Alternation in the fruit flprosophila
melanogaster Neuroscience and biobehavioral review&(Psychonomic sci-
ence), 339-340.

Mronz, M. and Strauss, R. (2008). Visual motion integrationtrols attractive-
ness of objects in walking flies and a mobile robotlnternational Conference

on Intelligent Robots and Systerpages 3559-3564, Nice, France.

Murphey, R. (1965). Sequential alternation behavior infthé fly Drosophila

50



melanogaster Neuroscience and biobehavioral revievJournal of Com-

parative Physiology and Psichology), 196—-199.

Nowotny, T., Rabinovich, M., Huerta, R., and Abarbanel, 20d3). Decoding
temporal information through slow lateral excitation i thifactory system of

insects.Journal of Computational Neurosciende, 271-281.

Rabinovich, M., Volkovskii, A., Lecanda, P., Huerta, R., abanel, HDI, and
Laurent, G. (2001). Dynamical encoding by networks of cotimgeneuron

groups: winnerless competitioRhysical Review Lettey87(6), 068102-1.

Rubin, D. and Wenzel, A. (1996). One hundred years of foirggttA quantitative
description of retentionPsychological Reviewl03 734—-760.

Schroter, U.; Menzel, R. (2003). A new ascending sensogt tathe calyces
of the honeybee mushroom body, the subesophageal-catgcal dournal of
Comparative Neurologyt652), 168—178.

Song, S. and Abbott, L. (2001). Cortical development andamping through
spike timing-dependent plasticitieuron 32, 339—-350.

Song, S., Miller, K., and Abbott, L. (2000). Competitive lngdmn learning through
spike-timing-dependent plasticitiature Neuroscj.3, 919-926.

Stocker, R., Lienhard, C., and Borst, A. (1990). Neuronah#ecture of the

antennal lobe in drosophila melanogastell Tissue Repages 9-34.

Sun, R. and Giles, C., editors (2008equence Larning: Paradigms, Algorithms,
and Applications Springer-Verlag, Heidelberg, Germany.

51



Tang, S. and Guo, A. (2001). Choice behavior of drosophdatacontradictory
visual cues Science294, 1543-1547.

Tanji, J. and Shima, K. (1994). Role for supplementary matea cells in plan-

ning several movements aheadhature 37, 413-416.

Wang, D. and Arbib, M. (1990). Complex temporal sequencmlag based on
short-term memoryProceedings of the IEEF8(9), 1536—1543.

Webb, B. and Consi, T. (2001Biorobotics : methods and application®enlo
Park, CA : AAAI Press/MIT Press.

Wehr, M. and Laurent, G. (1996). Odor encoding by tempomlisaces of firing

in oscillating neural assembliellature 384, 162—166.

52



Learned Sequence:

+OTLEO0Q

250

200

: : | ' | : | i |
0 40 80 120 160 200 240 280 320
time (s),

Epoch 3 Epoch4 Epoch 5
90° 90" 90°

[TIES | I 1807 (Yo} 180 (o] 180

Figure 16: Behaviour of the robot while reconstructing anea sequence when noisy inputs are
provided. The arena is depicted on the top right side, thaésbsequence on the top left side, the
shapshots at the bottom side depict the objects presengzgtiatepoch of the sequence, whereas
the graph shows the time evolution of the gaze direction@ftbot. When two visual stimuli are
simultaneously presented (epoch 2, 4 and 6) the disturbarfdtered out and the robot orients

towards the monitor where the correct expected symbol izrsho
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Figure 17: Synapses connecting the neurons of the Contextta thea-/-lobes winning neu-
rons for various sequences. The synapses learned througR Biluce the generation of a se-

guence. The last element of each sequence is connecteddandimeuron in the output layer.
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Figure 18: Activity in thea-/-lobes and in the Context layer during the learning phaséhier
sequence (&)BCD (b) DBCA The connections between the/ 5-lobes and the Context layer are

indicated together with the diffusion activity producedthg winning neurons in the context.
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Figure 19: Trend of the membrane potential of a neuron intfi@-lobes when the level of noise

in the input current ist5% and of+20%.
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