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Abstract

The proposed work introduces a neural control strategy for guiding adapta-
tion in spiking neural structures acting as nonlinear controllers in a group of bio-
inspired robots which compete in reaching targets in a virtual environment. The
neural structures embedded into each agent are inspired by a specific part of the in-
sect brain, namely Central Complex, devoted to detect, learn and memorize visual
features for targeted motor control. A reduced-order model of a spiking neuron is
used as the basic building block for the neural controller. The control methodol-
ogy employs bio-inspired, correlation based learning mechanisms like Spike tim-
ing dependent plasticity with the addition of a reward/punishment-based method
experimentally found in insects. The reference signal for the overall multi-agent
control system is imposed by a global reward, which guides motor learning to di-
rect each agent towards specific visual targets. The neural controllers within the
agents start from identical conditions: the learning strategy induces each robot to
show anticipated targeting actions upon specific visual stimuli. The whole control
structure also contributes to make the robots refractory or more sensitive to spe-
cific visual stimuli, showing distinct preferences in future choices. This leads to
an environmentally induced, targeted motor control, even without a direct com-
munication among the agents, giving robots, while running, the ability to perform
adaptation in real-time. Experiments, carried out in a dynamic simulation envi-
ronment, show the suitability of the proposed approach. Specific performance
indexes, like Shannon’s Entropy, are adopted to quantitatively analyze diversity
and specialization within the group.
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1. Introduction

Adaptive motor control in a dynamically changing, life-like environment, in-
volves a continuous evaluation of the external constraints imposed by the environ-
ment and a comparison with the internal states which drive intended behaviors.
The capability of efficiently react to external stimuli and re-adapt behavioral re-
sponses improves the living being performance and life expectations. This overall
perspective poses the agent-environment interaction as a complex adaptive non-
linear control system, where the single agent exploits the possibilities available
in the environment and records the imposed constraints. This is even more im-
portant when a group of agents coexists in the same environment. Multiple indi-
vidual control architectures have to compete and cooperate to improve individual
and collective performance. Among adaptive properties shown by each individ-
ual, diversity refers to the possibility to show differences among the single agents
in terms of behavioral responses: this could derive from a different body struc-
ture, hardware constraints or controller architecture. Another possible adaptive
behavior, which could be a consequence of the previous property, is specializa-
tion: this generally arises in identical agents through learning processes and adap-
tation mechanisms. Its consequence is an improvement of performance related to
the ongoing task. Nature offers a superb source of inspiration to face with this
complex control task: insect colonies show extraordinary emerging adaptation ca-
pabilities embedded into simple brain structures. Often, these are the result of
a modulation of individual insect behaviors (Staddon, 1983). For example, ants
modify their paths according to environmental changes, succeeding, for instance,
to avoid an obstacle, or to recover from a faulty situation. Recent progresses in
Ecology heavily contributed to identify the presence of different personalities in
bee colonies, furthermore ants have shown to be able to develop behaviours not
only within colony, but also individually. The intra-colony variability is vital to
survive and to respond to environmental changes in a flexible manner. Several re-
searchers tried to formulate the possible theory about the origin and co-existence
of different personalities. Raine et al. (2006) argue about population variability,
whereas Nettle (2006) discusses how heterogeneity and variation of environments
seem to play an important role to induce this diversity.

The novelty of the proposed work derives from the consideration that often
swarm intelligence is not only the result of cooperation among ‘simple’ individ-
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uals, but depends on ‘individual abilities’. Research on distributed and swarm
intelligence often underestimates the capabilities of the individuals. For instance
insects are not reflex automata, though they are often considered as such. Rather
they show interesting capabilities, as individuals, like attention, categorization,
capability to distinguish the concept of sameness and difference, to find new so-
lutions, and others (Chittka and Niven, 2009). The authors have been involved in
modeling and designing an insect brain computational model inspired by Drosophila
melanogaster. Despite its tiny brain, it is able to fulfill complex tasks, and there
are genetic tools used to modify specific areas and functionalities of the brain in
order to understand their role in different behaviours (Arena and Patané, 2014).
While trying to model the single behaviors from a bio-mimicking neural per-
spective, using the most advanced control methods for implementing locomotion
(Arena et al., 2011a) and cognition dynamics (Arena et al., 2012a,b,c), the authors
have been more and more aware of the richness of behaviours in fly individual,
in terms of learning and decision capabilities. These enable the insects to ac-
tively interact with the environment and decide appropriate strategies. Drosophila
melanogaster is definitely not a social insect: it does not have a nest, the only
social behaviors, discovered up to now, are mating and aggression. It is therefore
the best case to study interaction from the individual viewpoint. Individual capa-
bilities are posed in interaction with the external world. Each individual namely
interacts with the environment as if it is alone: the other agents are considered
within the context as part of the environment, and their own behavior can be ex-
ploited to increase the individual satisfaction. This is exactly the finality of mating
or aggression.

This paper analyzes the adaptive behavior of robots in a particular noisy envi-
ronment, where noise is caused by actions of other robots: this leads to a competi-
tive/cooperative scenario. Here the adaptive control strategy implemented through
interrelation among synaptic learning and neural dynamic adaptation within the
individual control system can lead to the emergence of a flexible collective behav-
ior which gradually increments, in real-time, the performance of each individual
and the overall performance of the group.

In order to analyze the interaction between the two learning mechanisms,
namely neural adaptation and synaptic plasticity, a number of simulation experi-
ments have been considered investigating the advantages of applying them simul-
taneously or separately. A realistic situation is that a robot interacts with a noisy
environmental condition due to the presence of the other robots. Performance in
such cases were evaluated: only two robots are considered in this paper for the
sake of clarity and for a thorough description. This approach has a direct rela-
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tion with the ethological counterpart: individual arthropods (e.g. bees, ants, fruit
flies) can mutate their behaviours in a flexible way, exploiting different learning
mechanisms (Robinson, 1992; Dornhaus and Franks, 2008). In these scenarios,
the individual capabilities subject to learning in a dynamic environment induce
the emergence of specialization: this is an adaptive dynamical and environment-
driven process (Li et al., 2002; Potter and Jong, 1995; Tuci et al., 2008) with
interesting consequences in the global performance. For this reason, the results
experimentally obtained in this paper potentially become the inspiration for future
research in bio-inspired computation in robot colonies, focusing attention on the
individual capabilities rather than on the population.

The manuscript is organized as follows: the control structure within each robot
will be depicted, starting from the dynamics of the neuron embedded into the
robot controller, passing through the learning algorithm, and then describing the
network architecture. Then the problem definition will be presented through the
description of the experimental setup, the robot mechanical and sensor structure as
well as the environment characteristics are described. Thus, the results obtained
through extensive simulation campaigns will be presented. Finally, conclusions
and future perspectives will be drawn.

2. The Neural Control scheme

Insects show several different learning capabilities for adaptation in the real
world (Menzel and Giurfa, 1996; Chittka and Niven, 2009; Liu et al., 1999).

Among the different insect species we focused our attention on the develop-
ment of an insect brain computational model mainly focused on the Drosophila
melanogaster, the fruit fly (Arena et al., 2011b). Within the insect brain two im-
portant neuropiles are the Mushroom Bodies and the Central Complex (CX). The
latter is the brain structure mainly involved in visual tasks; it is composed by
three neuropils, namely the Protocerebral Bridge (PB), the Ellipsoid Body (EB)
and the Fan-shaped Body (FB). In particular, The PB allows the fruit fly to know
where the visual object of interest is located in the visual range; in other species,
like the flesh fly, the PB is also a center where mechanosensor information is
processed (Phillips-Portillo, 2012). The FB, on the other hand, has an important
role in storing object features to be used for learning. The FB can be modeled as
a multi-network control architecture based on spiking structures where uncondi-
tioned stimuli (i.e. reward and punishment) are used to trigger a correlation based
learning, as shown below. The Ventral Lobes, an accessory area of the CX, are be-
lieved to convey pre-processed visual information from the CX to motor areas for
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Figure 1: Block diagram of the control system architecture. Three main blocks are depicted:
Sensorial pathway where the information from the sensors is collected, a Neural Controller, re-
sembling the Central Complex in the insect brain, where the spiking network evolves on the basis
of the acquired sensory signals and a Motor Layer where the action is selected and executed in the
dynamic simulated Environment.

steering control (Triphan et al., 2010). In the following a neural model of the FB
has been implemented. It was designed using a biologically inspired neural net-
work with spiking neurons. Due to their properties Spiking Neural Networks are
specifically suitable to fast and efficient applications, where the timing of input
signals carries important information, providing powerful tools for analysis and
investigations of processes in the brain structures. Moreover, spiking neurons are
computationally more powerful and biologically plausible than perceptrons and
sigmoidal gates (Maass and Graz, 1997; Maass, 1997). For these structures, bio
inspired strategies were developed to modulate synaptic connections. As a conse-
quence, spiking versions of supervised, unsupervised and reinforcement learning
techniques can be introduced. A number of control signals are used to obtain
learning and specialization. The former is a function of the external reward sig-
nal; it implements an adaptive proportional control gain on the neuron bandwidth,
facilitating or inhibiting its spiking activity. The latter contributes to the synaptic
plasticity, as will be deeply discussed below.

Fig.1 shows the block diagram of the overall control system: the Neural Con-
troller, modelling through spiking network the basic functionalities of the CX,
acquires external information from the Sensorial pathways including, in particu-
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lar, the Visual and Mechano sensory inputs. The output of the Neural Controller
guides the Motor Layer modulating the appetitive/aversive behaviour of the sys-
tem. In particular, Obstacle Avoidance is a reflex induced reaction which is auto-
matically performed whenever a robot meets walls or other robots. The Reward
signal (Rw), generated by the environment, triggers the learning mechanisms on
the Neural Controller, as detailed below, to specialize the system on the basis of
the actions previously performed. A hearing source or a flashing light are exam-
ples of potential signals stimulating a reward or a punishment.

Since a foraging task has been implemented, the different environment setup
impose a series of realistic constraints to each robot. Multiple targets with dif-
ferent color (Col1 = yellow and Col2 = blue) are present in the environment and
generally the task is composed of four phases:

Phase 1 - only yellow targets are visible in the arena;

Phase 2 - a robot reaches one yellow target: then blue targets become visible
to the robots. After reaching a yellow target, the robot remains there for a
given time to simulate feeding conditions;

Phase 3 - a robot reaches one of the blue targets. If concurrently another
robot is on one yellow target the condition two robots-two colors is realised.
The reward signal is then activated;

Phase 4 - blue targets are now disabled and a new foraging task begins.

These simple rules, imposed by the environment, prevent a robot from reach-
ing a rewarded state independently from the actions of the other robots, even if
each robot does not have any information about the other robot behaviors. This
leads to specialize in different behavioral actions. The arousal of this specializa-
tion is reached thanks to the fact that, in case of reward, each robot undergoes
a learning phase, leading to increase its willingness to find the color currently
reached (considered as the source of reward) and decreases its interest in the other.
Learning details are given below.

2.1. The Neuron model
The spiking neural network introduced in this paper is made-up of class I

excitable Izhikevich neurons: they reproduce the main firing patterns and neural
dynamical properties of a biological neuron, guaranteeing, at the same time, low
computational burdens (Izhikevich, 2003). Class I configuration is particularly
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suitable for implementing sensing neurons, being the spiking rate proportional to
the amplitude of the stimulus. The basic dynamics of the neuron is depicted in the
model equations as follows:

v̇ = 0.04v2 + 5v + 140− u+ I
u̇ = a(bv − u)

(1)

with the spike-resetting

if v ≥ 0.03, then

{
v ← c
u← u+ d

(2)

where v, u represent, respectively, the neuron membrane potential and the re-
covery variable, and they are dimensionless variables. a, b, c and d are system
parameters and in particular, a = 0.02, b = −0.1, c = −55, d = 6. I models the
pre-synaptic input current. This is composed of two main contributions and will
acquire relevance for the learning method, presented below. The time unit is ms.

2.2. Neural control through STDP learning
To model the synapse connecting a neuron j with a neuron i, we assumed that

the synaptic input to neuron j is given by the following equation:

Ij(t) =
∑
wijε(t− ti) (3)

where ti indicates the instant in which a generic neuron i, connected to neuron j
emits a spike, wij represents the weight of the synapse from neuron i to neuron
j and the function ε(t) describes the contribution of a spike from a presynaptic
neuron emitted at t = 0 (Floreano and Mattiussi, 2001), according to:

ε(t) =

{
t
τ
e1−

t
τ if t ≥ 0

0 if t < 0
(4)

In our simulations τ = 5ms. In order to model the biological synaptic modulation,
the Spike Timing Dependent Plasticity (STDP) was adopted (Song et al., 2000).
In this method synaptic weights are controlled through a function of correlations
between pre- and post-synaptic spikes. In details it holds:

w(k + 1) = w(k) +
n∑
l=1

∆wl (5)
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where ∆wl represents the weight variation associated to the l-th couple of pre-post
synaptic spike (l = 1, · · · , n) and k denotes the index of the time window used
for weight update, here fixed to 300ms.

∆wl =

 A+e
∆tl
τ+ if ∆tl < 0

A−e
−∆tl
τ− if ∆tl ≥ 0

(6)

∆tl = tpre − tpost represents the difference between the spiking time of the pre-
synaptic neuron (tpre) and the post-synaptic one (tpost), referred to the l− th spike
couple. During a learning cycle, the synapse is reinforced when ∆tl < 0, (i.e.
when the post-synaptic spike occurs after the pre-synaptic spike); otherwise when
∆tl ≥ 0, the synaptic weight is decreased. The terms A+ and A− represent the
maximum values, obtained for equal pre- and post- spiking times. The synaptic
rule in eq. 4 may lead to an unrealistic growth of the synaptic weights, it was
proposed in Song and Abbott (2001) and Izhikevich (2007) to fix upper limits for
the weight values, whereas in Verschure et al. (1992) and Verschure and Pfeifer
(1992) a decay rate in the weight update rule was introduced. This solution tries
to avoid the increase of weights and allows a continuous learning to be imple-
mented. In our experiments the parameters are chosen in a range compatible with
biological findings available in literature (Arena et al., 2009b; Drew et al. , 2006)
as follow: A+ = 0.8, A− = −0.8, τ+ = 7ms, τ− = 2ms, whereas the upper
bound of the weights value is set to 32, the lower bound is set to 0 and the decay
rate is set to 2% each robot performed action (i.e. robot step).

2.3. Neural control through threshold adaptation
Threshold adaptation has a solid biological background: in fact, it can be seen

as a consequence of the nonlinearities presented in the neuron membrane dynam-
ics (Izhikevich, 2004). Input-output function adaptations for auditory neurons in-
volved in sound coding were accurately detected and studied (Dean et al., 2005).
Moreover this mechanism seems to produce emergent cooperative phenomena in
a large population of neurons, and seems to be responsible for contrast adapta-
tion (Dragoi et al., 2000; Greenlee and Heitger, 1988), or for scaling adaptation
to varying stimuli in the somatosensory cortex (Garcia-Lazaro et al., 2007). In
our control model the reward signal will act on specific neurons in the neural
controller by increasing or decreasing their input current. In particular, the thresh-
old of the punished neurons will be incremented: repeated punishment will make
neurons unable to elicit any response. On the other hand, the threshold of the
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rewarded neurons will be decreased: this will lead to an increasing facilitation to
emit spikes when stimulated.

Biological studies have reported its relevance in such cases as the forward
masking of weaker stimuli (Sobel and Tank, 1994) or the selection response to
fast stimuli (Peron and Gabbiani, 2009). In Neurobiology, the adaptation mech-
anism should be modeled as either an adaptation current or a dynamic threshold:
both mechanisms result in a similar adapting spiking rate and the two methods are
mostly comparable (Liu and Wang, 2001). Moreover, adaptation current repro-
duces the properties of the more realistic conductance-based model for integrate-
and-fire neurons, even if the two mechanisms have a qualitatively different effect
on the neuron transfer function. Furthermore, spike-frequency adaptation can be
modeled using adaptation current, because dynamic firing threshold seems not to
be the cause of spike-frequency adaptation, but it is a secondary effect, i.e. the
result of an adaptation current action (Benda et al., 2010).

In our implementation, the input current I in eq. 1 is split in two contributions:
an input Ii, that accounts for both external stimuli (e.g. sensorial stimuli) and
synaptic inputs, and the IA, that represents a bias subject to the adaptation effects.
The I in the eq. 1 becomes:

I = IA + Ii (7)

In particular, the Threshold adaptation process can be modelled as a voltage-
dependent current and so the term IA in eq. 7 can be expressed as IA = gAVthresh,
defining gA as an activation-conductance. The current can be modified to hy-
perpolarize or depolarize (IA ← IA ± ∆IA) neurons. IA acts as an incremental
adaptation current depending on the reward signal (Benda et al., 2010; Benda and
Herz, 2003). In details, IA is modulated if the target sensory neurons are active
(through the input ITarget) and concurrently a reward signal comes from the en-
vironment. The adaptation scheme here proposed is based on a solid biological
background. Neuro-control schemes were in fact introduced recently which ex-
plain olfactory conditioning in insects using feedforward signals modulated by
external reward/punishment events (Gerber et al., 2004; Arena and Patané, 2014).

2.4. The Neural Feedforward Controller Structure
In this section the Neural Controller and the Motor Layer blocks, are ex-

plained in details (see Fig. 1). The spiking network (Arena et al., 2009a,b), used
as starting point for this new learning mechanism, consists of two main parallel
pathways: one acting as a classical feedback controller, and another acting as a
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Figure 2: The feedback/feedforward control loop element within the neural controller.

trainable feedforward path. The feedback controller is not subject to learning and
it is used as reference dynamical model for the trainable feedforward one. Fig.2
shows the details of the control loop in a simplified case involving the neuron
chain. Feedback signals from the environment are here divided into low level and
high level signals. Low level are provided by color sensors fixed in the ventral area
of the agent. They respond only if the agent is located on a specific colored area.
High level sensors are here represented by a camera used to detect colored objects
from a distance spanning the whole arena size. Low level sensors constitute the in-
put for the Target Neuron (TN), whose activity certifies that the robot has reached
a given colored target. Concurrently high level sensor signals constitute the in-
put to the Vision Neuron (VN) which fires whenever a specific colored target is
within the visual range. Learning takes place when the agent reaches the colored
target: now both TN and VN fire. Since synapses in the feedforward path are not
trained, initially only TN is able to elicit a motor neuron (MN) response through
interneuron (IN) fire. Now both VN and IN get fired and this elicits STDP for the
synapse from the VN to IN. Therefore TN-IN dynamics constitutes the reference
for the VN-IN neural group and this feedforward controller will learn to stimulate
the MN with a targeting action whenever VN is active. This trainable feedforward
synapse is drawn in dashed line. A detailed analysis neuro-computational aspects
of this control method are reported in (Arena et al., 2009a). Another control action
is here added to the loop: if specific conditions are satisfied in the environment,
for example if we are in phase 3 previously presented, the reward signal activation
acts by controlling the input current to the VN, making it more or less prone to
fire in front of visual stimuli. This causes specialization of the agent to specific
stimuli. The two control actions, namely specialization and STDP, can be used
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Figure 3: The neural network used to control each robot is composed by two subnetworks: (a)
Obstacle avoidance subnet - CL/CR: contact left/right signal; DL/DR: distance left/right signal.
CLN/CRN and DLN/DRN are the sensory neurons to modulate obstacle avoidance actions through
the inter-neurons OALN/OARN. (b) Object approaching subnet - TLCx/TRCx: target left/right for
color x; VLCx/VCCx/VRCx: vision (left,central,right) sensor signals for Color x (x = 1,2); these
are the stimuli whose motor action has to be learned. TLN/TRN and VLN /VCN /VRN are sensory
neurons that act on the motor neurons (MLN/MRN) through the inter-neurons VISLN/VISRN.

separately or concurrently, as will be discussed in the following Sections.
The whole neural controller is shown in Fig.3. Here are visible the details

for the obstacle avoidance network (Fig. 3 (a)) and for the subnetwork related
to visual targeting (Fig. 3 (b)). Trainable feedforward synapses are here again
depicted in dashed lines. Both sub-networks contribute to control the robot move-
ments, through motor-neurons that modulate the velocity of the wheels on the left
(MLN ) and right (MRN ) side of the robot. Walls and other robots in the environ-
ment are considered as obstacles and the robot learning is performed managing
also obstacle detection and overcoming (through the obstacle avoidance block),
whose contribution heavily influences the final robot specialization. The obstacle
avoidance subnet has higher priority in order to avoid collision if an obstacle is
detected. The block dedicated to visual target detection and object approaching
permits the robot to identify and reach specific targets. The Role Specialization
learning starts when a reward function is activated and the Threshold adaptation
of the activated vision neurons is performed, in order to reinforce or weaken the
corresponding sub-network.

The network consists of three layers and generalises the scheme of Fig.2 with

11



the addition of an obstacle avoidance block. The first layer is constituted by sen-
sory neurons that are connected to motor-neurons (motor layer) through a layer of
inter-neurons. Referring to Fig. 3, contact (CL−CR) and target (TLCx−TRCx)
sensory neurons elicit reflexive reactions (i.e. obstacle avoidance and target reach-
ing): they are not subject to learning. The network learns targeting motor re-
sponses to vision inputs (VLCx-VCCx-VRCx). These occupy specific positions
on the robot, as will be clarified in the Section 3. All the trainable synapses (de-
picted in dashed lines in Fig. 3) act so as to incrementally generate, through
STDP learning, feedforward pathways from the visual input signals to the motor
neurons, as explained above. The feedforward path will, at the end, take the lead,
anticipating motor targeting as soon as the target will appear in the robot vision
field. The weight of the anticipative effect will depend on the value of the synap-
tic efficiency. In fact at the beginning, visual stimuli are not able to trigger any
response and motor control is managed only by the target sensor network. The
learning process incrementally activates the new path to the motor layer modify-
ing the corresponding synaptic weights by STDP. The additional control, acting on
neuron Threshold through IA modulation, works as follows: if the target sensors
fired, for example TLN Col1 stimulate by Col1, and the reward signal is acti-
vated, due to the concurrent actions of another robot, the currents IA of the Col1
subnet are increased, whereas the IA currents for neurons sensitive to Col2 are
weakened. Consequently, the neurons related to the inhibited subnet become less
sensitive to Col2, until no response occurs in presence of Col2. All IA currents are
initialized to the same value: IA = 20; instead Ii can assume two possible values:
Ii = 0 if no input occurs or Ii = 8 otherwise. Using this initialization, together with
a threshold value for the input current IAth = 22, at the beginning the presence
of a target is abundantly able to elicit a neuron response. The learning process
influences the parameter IA so, when this value sufficiently decreases, the contri-
bution of Ii cannot overcome IAth and the neuron is no longer sensitive to external
stimuli. For the following arguments, it is important to underline that within each
robot step the proposed SNN is simulated for a time window of 300ms: in our
case one robot step corresponds to 2500 simulation steps with an integration time
of 0.12ms. The robot motion direction will be selected according to the number
of spikes generated by the left and right motor-neurons during the simulation time
window.
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(a) (b) (c)

Figure 4: (a) The real environment with the prototype of the TriBot robot. (b) The simulated
environment: an arena 3m x 2m with four targets (two yellow and two blue) and four simulated
TriBot robots. (c) The simulated environment and the GUI of SPARKRS4CS. On the left-middle
and left-bottom side, the graphical interface related to two robots are shown. Subfigures from the
top left to the top right show the robot on-board cameras, whose field of view was fixed to ±45o.

3. Experimental Setup

The experimental case taken into account is related, as reported above, to
a classical foraging task. The robot experiments were implemented using the
SPARKRS4CS architecture, a software/hardware framework realized to allow the
development of cognitive systems with the addition of an ad hoc 3D Dynamic
Robotic Simulator (Arena et al., 2011c). The framework is able to perform exper-
iments both in real and simulated environments; however, due to the missing of
multiple prototypes of the TriBot robot, all the reported results refer to dynamical
simulations. Fig. 4 (b) shows a screenshot of the overall dynamic environment
used to perform the experiments. It directly resembles the real arena used for
real robot experiments (Fig. 4 (a)). Simulation tests were carried out in an arena
(3mx2m) filled with a number of two different targets (yellow and blue) dis-
tributed on the floor. In these scenarios, the initial position of the robot and targets
are randomly determined.

The robots used in the experiments are the simulated version of the bio-inspired
hybrid mini-robot, named TriBot I (Arena et al., 2010; SPARK I Project, 2007;
SPARK II Project, 2011). It is a hybrid robot developed to investigate cognitive
capabilities inspired by insects. TriBot I is composed of three modules, the first
two contain wheels made of three-spokes appendages that improve the dexterity of
the structure (Schroer et al., 2004). The front module is composed of two standard
legs with 3 degrees of freedom, each one connected to the main body.

The characteristic capabilities were already tested on the robot in previous
works (Arena et al., 2006), and could be useful to boost the cooperation abil-
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Figure 5: Overview of the TriBot robot model, where simulated sensors are highlighted. (a) Dis-
tance sensors: DLA (Distance Left Arm), DLH (Distance Left Hand), DRA (Distance Right
Arm) and DRH (Distance Right Hand). Contact sensors: CLA (Contact Left Arm), CLH (Con-
tact Left Hand), CRA (Contact Right Arm), CRH (Contact Right Hand). (b) Low level sensors:
TL (Target Left), TR (Target Right). (c) on-board camera captured image. (d) processed image.

ities. Fig. 5 gives an overview of on-board sensors and camera embedded on
TriBot I. Obstacle avoidance is performed using four distance sensors as shown in
Fig. 5 (a): DLA (Distance Left Arm),DLH (Distance Left Hand),DRA (Distance
Right Arm) and DRH (Distance Right Hand). On each side, the lowest distance
value calculated by the sensors is used to provide the DL and DR input value
to the neural network, respectively (see Fig. 3(a)). TriBot is also endowed with
contact sensors: CLA (Contact Left Arm), CLH (Contact Left Hand), CRA (Con-
tact Right Arm), CRH (Contact Right Hand); if at least one of the two sensors is
under a given threshold, the respective CL/CR input is triggered (see Fig.3(a)).
Furthermore the robot is endowed with Low level colour sensors, TL (Target Left)
and TR (Target Right), used to detect when a robot reach one of the targets placed
in the area (Fig. 5(b)). Each robot includes an on-board camera (see Fig. 4(c))
that acquires information (Fig. 5(c)) that is then processed by the visual system
(Fig. 5(d)). Using a standard image processing algorithm, the image is partitioned
in three sectors to identify the position of the object in the visual field for orien-
tation purposes. The sector is selected depending on the centroid position of the
detected target in the scene. VL, VC and VR represent respectively the left, central
and right sectors of the segmented visual field according to visual information is
spatially mapped on the visual neurons (see Fig.3(b)). If multiple targets are de-
tected in the scene, the object with the largest area is selected. The field of view
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is ±45o. The characteristics used for the simulated camera (e.g. field of view, po-
sition on the robot, etc.) are related to the real device equipped on the robot. Here
visual information is extracted using a bio-inspired smart camera able to process
in parallel and with a high frame rate the visual flow, following the paradigm of
the Cellular Neural Networks (Arena et al., 2011d; Alba et al., 2009, 2010).

4. Results and analysis

STDP and threshold plasticity have been applied together. This is useful to in-
vestigate the interplay between Role Specialization mechanism and STDP learn-
ing, to estimate the improvement in speeding-up Role Specialization and to eval-
uate the possible improvement of the learning convergence.

The first series of experiments includes robots already trained through STDP:
they are able to recognize and reach all the targets (Arena et al., 2009b): so here
only the effect of Threshold adaptation can be evaluated. The rules are the same
as reported above: the robots start searching targets; when a robot reaches the
target area a second target area is made visible, and so the other robot can reach
it. When the final target is reached and the two robots-two targets rule is satis-
fied, the reward function is activated. In these conditions if a robot has currently
reached a specific target (say Col1), the corresponding target neurons (TLNCol1,
TRNCol1) activate their own role specialization learning block (see Fig. 3(b)) in
order to increase IA for vision neurons belonging to the same subnet (VLNCol1,
VCNCol1, VRNCol1). Moreover TLNCol1 and TRNCol1 will act on all the
other role specialization learning blocks to decrease IA. In this way, the Role
Specialization learning mechanism will reward the active subnet and punish the
other subnets. At the end of the learning process, each robot will be specialized
to reach a specific colored target. In the second series of experiments, the weights
are not pre-trained. At the beginning, no targets are known and robots perform
only default behavior, i.e. exploration, which simply consists of going straight
forward in the arena and avoid obstacles. When a robot by chance walks on a
colored target, the corresponding target sensors are activated concurrently with
visual sensors: this induces a weight update through STDP. If the reward is also
activated, a threshold learning phase is triggered. To validate the efficacy of our
learning method, a set of testing simulations have been performed and some sim-
ulation results are discussed to show the influences and interactions between the
two learning methods.
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(a) (b)

Figure 6: Threshold adaptation effects: Membrane Potential, Reward activation and Total Input
Current (I = IA + Ii) of a vision neuron for Robot 1 are shown. (a) - Hyperpolarization: the
input current decreases during the reward activation. The spike train frequency tends to decrease
in front of subsequent stimulations; this will lead to emit no spikes at the end of the learning. (b) -
Depolarization: the adaptation current increases reaching the upper bound, increasing the neuron
spiking rate.

(a) (b)

Figure 7: Example of simulation results: Membrane Potential, Reward activation and Total Input
Current of a vision neuron for Robot 2 are shown. (a) - In this case a depolarization of the neuron
occurs in front of a reward signal. The adaptation current increases during an input excitation, and
the spike train increases. (b) - Hyperpolarization of a vision neuron. Even if no input is present, a
decrease of the current is learned during the reward activation, producing a decrease in the spike
train frequency.
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4.1. Role Specialization through Threshold adaptation
In these series of experiments the capabilities of threshold adaptation are eval-

uated. Initially each robot is sensitive to two targets, characterized by two different
colors. This kind of learning will lead to a specialization towards a single colored
target. Fig.6 and Fig.7 show an example of the learning mechanism: the reward
function is elicited when Col2 is activated, after the activation of Col1. In the
time window around 2.0∗105 simulation steps, a specific vision neuron for Robot
1 is currently stimulated by Col1 (Fig. 6(a)), but no threshold adaptation takes
place, since, at the same time, Robot 2 is not stimulated by Col2; clearly in this
time window both robots are in the same colored target (Fig. 6(a) and Fig. 7(a)).
The reward signal is therefore silent. On the contrary, around 2.07 ∗ 105 simu-
lation steps, Robot 1 vision neuron is stimulated by Col2 (Fig. 6(b)) and con-
currently Col1 target is within the visual range of Robot 2. So its vision neuron
fires (Fig. 7(a)). Around 2.1 ∗ 105 Robot 1 arrives to Col2 target (Fig. 7(b)): the
two robots-two targets rule is satisfied and the reward signal is activated. Robot
1 vision neuron sensitive to Col2, is depolarized (by increasing IA) whereas Col1
vision neuron is hyperpolarized. On the other side, in Robot 2 the effect for each
subnet is exactly the opposite. The emerging behavior is a specialization effect
for Robot 1 to Col2, for Robot 2 to Col1, respectively.

4.2. Role Specialization with threshold adaptation and STDP Learning
Another set of experiments use threshold adaptation in combination with synap-

tic plasticity. Initially the robots need to learn the correct behavior in front of
a visible object. The two learning mechanisms are here combined in order to
perform a complex global learning procedure. During the experiment, as said
above, if the robot reaches a target previously seen through the visual system, tar-
get neurons are stimulated and the update of the corresponding synaptic weights
for the feedforward (visual) pathway is performed. In addition, when the global
reward function is activated, a cycle of the Specialization mechanism is performed
through IA update. All the tests performed have shown the remarkable positive in-
fluence of the threshold adaptation over the STDP learning in the synapses related
to the vision neurons for the color which the specific robot is specialized for. This
result was predictable since initially the retrieval of the target is random, being
the environment and the objects unknown by the robots. At the beginning, robots
show no reaction to visual stimuli but, during the learning phase, the increase of
synaptic efficiency and the threshold adaptation work concurrently. In this way,
a speed-up in the learning process is obtained: the initial randomness encourages
one of the potential roles, since robots are prone to find the first rewarded target
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Figure 8: Trends of adaptation current: high values of IA are maintained for VLNCol1. This
Vision neuron remains sensitive to its input stimulus, whereas IA of VLNCol2 is decreased even
below the Inactivation current level Iina (dashed line). This neuron during time loses sensitivity
to its input.

more frequently than other targets. At the same time the relative synapses are
updated and contemporarily the other behavioral choices are inhibited, improving
the learning convergence. Fig.8 shows the neuron current (IA) for a Vision neuron
related to the subnet that is going to be reinforced (VLNCol1) and for a Vision
neuron of the subnet that will be inhibited (VLNCol2). In the first one, the current
is maintained at high values and so the sensitivity of this neuron is maintained:
whereas, the currents of the other neurons are decreased. During time, for these
last neurons it becomes more and more difficult to reach and exceed the thresh-
old value (IAth= 22); the effect consists in an ever decreasing spiking rate until
the lower bound current value (Iina) is overcome and no more spikes are emitted,
even in presence of a visual input. As regards synaptic weights, Fig. 9 displays
how only the subnet devoted to the selected target is trained, whereas the weights
of the neurons related to the other target are maintained very low. Fig. 10 shows
the trend of the number of targets (NY for yellow targets, NB for blue ones) found
by the two robots during a simulation. In Fig. 10(a) Robot 1 specializes in yellow
targets. Results show clearly that NY is much higher than NB. Fig. 10(b) shows
the outcome of Robot 2 that specializes in the blue targets at the end of the learn-
ing. During exploration in the arena it can happen that robots detect targets not
as a result of targeting, but accidentally. Fig. 11 shows the trend of the synaptic
weights when only STDP learning was applied, showing experimental evidence
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(a) (b)

Figure 9: Role Specialization with STDP Learning: (a) - trends of the synaptic weights for the
robot specialized in yellow (Col1) targets. The weights related to Col1 reach upper bounds,
whereas the weights of blue targets (Col2) keep lower values. (b) - trends of the synaptic weights
for the robot specialized in blue targets. In this case, the weights related to Col2 reach upper
bounds, whereas the weights of Col1 remain negligible: the robot quickly becomes sensitive to
the blue target. Even if it reaches a yellow one, no learning mechanisms will be activated.
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Figure 10: Cumulative number of reached targets: (a) related to the robot which is going to
specialize in yellow (Col1) target, (b) related to the robot which is going to specialize in blue
(Col2) target.
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(a) (b)

Figure 11: (a) STDP learning without threshold adaptation: trends of the synaptic weights for
yellow target (Col1). The weights reach their upper bound after 3.3 ∗ 105 simulation steps (cor-
responding to 132 robot steps). (b) - Threshold adaptation and STDP Learning: trends of the
synaptic weights for Col1. The weights saturate around 2∗ 105 simulation steps (corresponding to
80 robot steps).

of the improvement in convergence when both learning methods are applied.

4.3. Specialization with and without STDP: Comparisons
To perform statistical comparisons, a set of simulation tests was performed.

No decay effect was applied to the synaptic weights: in this way, learning is con-
sidered complete when all values reach their upper bounds. The results reported
in Fig. 12 refer only to one of the two robots. In this case, we can see that using
only STDP, the weights require more simulation steps to reach their steady-state
values, than when applying also Threshold adaptation. This comparison shows an
improvement in the range of 30− 50% in simulation steps. The results are shown
in Table 1. The same comparison was carried out to evaluate the performance of
the Threshold adaptation with and without the STDP learning concurrently active.
The results show that the specialization becomes slowly convergent when acting
together with STDP learning. This aspect is directly related to the global reward
and its activation. In fact, to perform a Threshold adaptation learning cycle, both
robots must reach different targets. In the first steps, when the weights are not
tuned, the robots spend a lot of time exploring the arena, so the specialization
learning starts to converge later.

Fig.13 displays a comparison between the current IA for a vision neuron which
is going to loose sensitivity to its input in presence of the concurrent action of
Threshold adaptation and STDP, and when threshold adaptation was applied on an
already trained network. In the first case, the specialization was completed after
180 robot steps, whereas in the second case just after 41 robot steps. This is a clear
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Figure 12: Statistical comparison of results. Trend of the synaptic weights with and without the
activation of the threshold adaptation during STDP: results of ten trials for each case. The weights
of the network trained only via STDP are reported in dotted line, whereas in solid line the trend of
weights with STDP learning in association with threshold adaptation are shown. The event used
to compare performance is the simulation step when weights reach their upper bound.

Table 1: Statistical comparisons between STDP learning with and without Role Specialization.
The mean value of the time elapsed for the convergence of the synaptic weights together with
other statistical parameters are reported.

Specialization with STDP simulation steps robot steps
mean value (m) 2 ∗ 105 80

standard deviation (σ) 0.78 ∗ 105 31
min 0.55 ∗ 105 22
Max 2.9 ∗ 105 115

Specialization without STDP simulation steps robot steps
mean value (m) 3.2 ∗ 105 130

standard deviation (σ) 0.85 ∗ 105 34
min 2.1 ∗ 105 83
Max 4.7 ∗ 105 187
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Figure 13: Comparison of the adaptation current (IA) evolution with active STDP learning and
with already tuned weights. The inactivation current level is Iina = 14. When the current falls
below this lower bound (around 4.5 ∗ 105 and 1 ∗ 105 simulation steps for upper and lower line
respectively) the neuron does no longer emit spikes, even in presence of an input Ii.

result: in a network already trained to reach all the targets, it is relatively simple
to specialize the agent to a particular target class. This is a potential benefit, since
preferences could be easily modified by adjusting the reward function, without
changing completely the system knowledge. This is particularly interesting in
case of dynamically changing environment.

Fig. 14 shows a typical trajectory before and after learning, respectively, for an
experiment with two targets and two robots. Here Role Specialization is tested us-
ing already tuned weights. At the beginning of learning, robots are both attracted
by all targets present in the arena. This is evident from the initial trajectory: both
robots try to reach the first active (yellow) target (placed in the bottom right part
of the arena). These trajectories show the presence of competition among robots,
indicated with a circle in Fig. 14(a). Here the two robots, attracted by the same
target, interact with each other and Robot 1 turns right to avoid the other agent,
that will be able to reach the yellow target. After learning, in Fig. 14(b) each robot
is interested only in a specific type of target. Here, at the beginning of the simu-
lation the blue target is not yet visible, so Robot 2 goes straight (i.e. the default
exploration strategy) whereas the yellow target attracts Robot 1. At 10 robot steps
the blue target is enabled, since Robot 1 has just reached the yellow target. Even
if Robot 2 can see both targets, it proceeds directly towards the blue one. Finally,
at 18 robot steps Robot 1, which has already reached the yellow target starts to ex-
plore the environment, whereas Robot 2 directs toward the blue one to complete
the mission.
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(a) (b)

Figure 14: Example of robot trajectories during Threshold adaptation with tuned weights. At the
beginning of learning (a), robots are sensitive to both targets. The threshold adaptation causes
gradual specialization to only one target. After learning (b), Robot 1 is specialized in yellow
targets and Robot 2 in blue ones.

5. Specialization Indexes

In this section, we discuss about the metrics for measuring specialization in
our system. Traditionally, quantify the global performance corresponds to iden-
tify a functional index to optimize. For this reason, a simple and general criterion
is to calculate the number of rewards triggered during the trials, i.e. how many
times the task is properly accomplished, according to a problem-specific differ-
ence measure. Following these concepts, we can define the following Specializa-
tion index:

S(t) = #Task accomplished events
#Tot. events (8)

A typical trend of the index is shown in Fig.15, where eq.(8) is used to probe
the evolution of specialization during an experiment. The task is considered ac-
complished if the targets reached when the reward is triggered match the final
behaviors of the robots. A statistical analysis over 20 experiments is shown in
Fig.16. According to the figure, we can assert that statistically after 150 Rw suc-
cessful events (Nw

Rw) all experiments converged to the final solution.
Another typical metric is to cluster agents with similar task-specific measure

and look at the obtained pattern in the feasible solution space; the number of
clusters represents the measure of diversity in the system. In ecology, diversity
indices are used to provide information about agents’ composition and relative
abundances of different species. Since specialization is quantified in term of di-
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Figure 15: Evolution of Specialization index S(t). A typical evolution of Specialization index
during an experiment. A sliding window (Nw

Rw) of 30 reward events is used.
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Figure 16: Statistical trend of Specialization index S(t). The blue line represents the mean of the
specialization evolution in a set of 20 experiments. The light gray area represents the standard
error of the mean (SEM), whereas the dark gray area represents the 95% confidence interval. The
index is calculated using a sliding window of w reward events (w = 30Rw).
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Figure 17: H(t) index. The blue line represents the mean of the specialization entropy. The light
gray area represents the standard error of the mean (SEM), whereas the dark gray area represents
the 95% confidence interval.

versity, Shannon’s entropy and Simpson’s diversity (Shannon, 1948; Simpson,
1949) are two interesting metrics used to evaluate the evenness (equitability or di-
versity) in relation to the distribution among different species. Successively Balch
(2002) introduced a metric to measure diversity, called simple social entropy, as
an application of Shannon’s entropy to scenarios involving multiple agents.

It is defined as:

H(χ) =
n∑
i=1

pi log2(pi) (9)

where n are the different sub-groups identified in the system χ and pi rep-
resents the portion of agents in the i-th cluster. Starting from these concepts,
we decided to use the H(χ) metrics in a different way: we evaluate the entropy
(H(k)) of our system χ during the experiment, starting from the eq.(9) as

H(k) = −H(χ, k) = −
n∑
i=1

pi(k) log2(pi(k)) (10)

where k represents the time evaluated in terms of sliding windows of reward
events and n = 2 represents the subgroups in which individuals can be divided
(respectively: sensible to both targets, sensible to a single target). Following this
assumption the evolution of the trend in the different number of clusters followed
by the agents is our diversity measure (see Fig. 17). According to the social
entropy index, which makes a meaningful measure by incorporating information

25



0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
Rw

D
iv

e
rs

it
y
 I
n
d
e
x

Figure 18: Simpson’s Index. The value ranges between 0 and 1, where the greater value repre-
sents evenness, on the contrary the lower value corresponds to diversity. The index shows how
Threshold adaptation’s uptime induces different learning convergence.

about the spatial distribution of the clusters, H starts from a high value that in-
dicates the robots, sensible to both targets, are included in the same subgroup.
During time the index value decreases theoretically toward 0, when the system is
totally specialized and the individuals are splitted in two opposite and decoupled
states.

In our case the steady state value is around 0.5 because even small fluctuations
in the subgroup division are emphasized by the presence of a logarithmic function.
To resolve this problem, according to Simpson (1949) and Meyer and McIntosh
(1992), we can correlate the decrease of the index directly to the diversity as here
indicated:

D(k) = 1−
s∑
i=1

q2i (k) (11)

where s = 4 is the number of adaptation currents involved in the Threshold adap-
tation learning. It depends on the number of targets, whereas qi represents the
total sensitivity to whole targets, proportionally to the normalized sum of adap-
tation currents of the agents in the system. Accordingly with this definition, the
index, in Fig.18, shows how our system starts with a complete evenness and con-
verges to a total diversity at the end of the training.
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6. Conclusion

In this paper a nonlinear controller realised using a spiking neural network is
presented. The neural network, designed to control motion in a group of agents
roving in a simulated environment, is a reduced scale structure of the Central
Complex, a neuropile met in the insect brain and acting as visual object classifier
and high level motion controller. The STDP based learning algorithm contributes
to generate a neural feedforward controller able to anticipate basic motor actions
computed by a neural feedback controller in each single robot. Another control
law, acting on the threshold of specific sensory neurons contributes to modulate
robot sensitivity to specific targets, implementing an adaptive real-time targeting
motor control on all the robots, which therefore show specialization for specific
targets. Simulations, statistical results and specific performance indexes assess
the suitability of the approach, showing how neural control strategies, within each
single agent, produce individual adaptation and a kind of labour division without
needing any direct communication among the robots. The task presented in this
paper considers the simple case of specialization to color preference: the method
can be extended to control artificial swarms and colonies, where each agent can
learn, and possibly re-learn, its favorite role within the group for the emergence
of teams.
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Arena, P. and Patané, L. (2014). Spatial Temporal Patterns for Action-Oriented
Perception in Roving Robots II: an insect brain computational model. Springer,
Series: Cognitive Systems Monographs, Vol. 21.

Arena, P., Fortuna, L., Frasca, M., Patané, L., and Pavone, M. (2006). Implemen-
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Arena, P., Patané, L., Pollino, M., and Ventura, C. (2010). Tribot: a hybrid robot
for cognitive algorithm implementation. In 18th IEEE Workshop on Nonlinear
Dynamics of Electronic Systems, (NDES 2010), 26-28 May 2010, Dresden.
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