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Abstract

Despite their small brains, insects show advanced capabilities in learning and task

solving. Flies, honeybees and ants are becoming a reference point in neuroscience

and a main source of inspiration for autonomous robot design issues and control

algorithms. In particular, honeybees demonstrate to be able to autonomously ab-

stract complex associations and apply them in tasks involving different sensory

modalities within the insect brain. Mushroom Bodies (MBs) are worth of primary

attention for understanding memory and learning functions in insects. In fact, even

if their main role regards olfactory conditioning, they are involved in many behav-

ioral achievements and learning capabilities, as has been shown in honeybees and

flies. Owing to the many neurogenetic tools, the fruit fly Drosophila became a

source of information for the neuroarchitecture and biochemistry of the MBs, al-

though the MBs of flies are by far simpler in organization than their honeybee

orthologs. Electrophysiological studies, in turn, became available on the MBs of

locusts and honeybees. In this paper a novel bio-inspired neural architecture is

presented, which represents a generalized insect MB with the basic features taken
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from fruit fly neuroanatomy. By mimicking a number of different MB functions

and architecture, we can replace and improve formerly used artificial neural net-

works. The model is a multi-layer spiking neural network where key elements of

the insect brain, the antennal lobes, the lateral horn region, the MBs, and their mu-

tual interactions are modeled. In particular, the model is based on the role of parts

of the MBs named MB-lobes, where interesting processing mechanisms arise on

the basis of spatio-temporal pattern formation, paradigm already investigated in

robot control applications (Arena et al., 2008b, 2009c). The introduced network is

able to model learning mechanisms like olfactory conditioning seen in honeybees

and flies and was found able also to perform more complex and abstract associ-

ations, like the delayed matching-to-sample tasks known only from honeybees.

A biological basis of the proposed model is presented together with a detailed

description of the architecture. Simulation results and remarks on the biologi-

cal counterpart are also reported to demonstrate the possible applications of the

designed computational model. Such neural architecture, able to autonomously

learn complex associations is envisaged to be a suitable basis for an immediate

implementation within an robot control architecture.

Key words: neuroscience, insect brain, insect mushroom bodies, spiking

neurons, learning, neural model

1. Introduction

Despite the small number of neurons in their brains, insects show interesting

capabilities to learn, categorize and recall associations and contextual information

in order to solve tasks that can, in the case of honeybees, even require a com-

plex level of abstraction (Menzel & Giurfa, 2006; Chittka & Niven, 2009; Liu
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et al., 1999; Tang & Guo, 2001). Insect brains are becoming a primary source

of inspiration for the design of powerful autonomous machine learning architec-

tures and control algorithms. Within the insect brain the mushroom bodies (MBs)

have attracted a lot of research attention regarding their architecture and behav-

ioral functions for modeling artificial neural networks (Smith et al., 2008). MBs

are well known in bees and flies for their role in performing associative learning

and memory in odor conditioning experiments (Menzel & Muller, 1996; Menzel ,

2001; de Belle & Heisenberg, 1994; Szyszka et al., 2005; Scherer et al., 2003; Liu

& Davis, 2006), but they are also involved in the processing of different sensory

modalities like for example visual tasks (Menzel , 2001; Liu et al., 1999; Tang &

Guo, 2001), other forms of learning, and in choice behavior (e.g. Gronenberg &

Lopez-Riquelme (2004); Tang & Guo (2001); Brembs (2009)). We refer primarily

to the architecture of the MBs in Drosophila melanogaster which is simpler than

in the honeybee and can be divided into substructures, called calyx, peduncle and

five lobes of the lobe system. The major intrinsic neuron type is the Kenyon cell

and those cells make up the MBs, the substructures of which correspond to their

dendritic regions, their axons and their axonal branches, respectively. Olfactory

information is projected to the calyx regions of the MBs from the antennal lobes

(ALs). Recently, also feedback connections from the MBs back to the ALs have

been found (Hu et al., 2010); a functional role of such connections in filtering

input information is hypothesized here. MBs interact with the lateral horn region

(LHs), presumably to provide a sparse representation of odors.

The ALs are modeled as a lattice of neurons, in which each neuron codifies

a particular odor component. Moreover, a locally competitive topology is im-

plemented here, as suggested by neurobiology (Sachse & Galizia, 2002). The
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AL layer randomly projects connections to the MB calyx, which is composed

of the dendritic arborizations of three different Kenyon cell types namely the

α − /β−neurons, the α
′ − /β

′−neurons and the γ-neurons. The α − /β− and

the α
′ − /β

′−lobes are connected through plastic connections and demonstrate

capabilities in clustering information. The LH model, as suggested by neurobi-

ology (Perez-Orive et al., 2002), has been thought as an input-triggered system

that provides a delayed global inhibition to the MB network. The actual model

builds upon a previous, much more limited version, successfully used to model

processes of expectation (Arena et al., 2011, 2012). The upgraded model is able

to reproduce, beside the olfactory classical conditioning, more complex tasks, like

delayed matching-to-sample tasks, which represent capabilities found in honey-

bees (Giurfa et al., 2001).

The proposed artificial neural network of the MBs provides the possibility

for modelling autonomous and complex decisions with application in controlling

tasks which involve different sensory modalities within the insect brain, with par-

ticular attention to honeybees and flies. In honeybees prominent visual inputs to

the MBs are anatomically evident and behaviorally most relevant (Menzel , 2001);

in flies there is behavioral evidence for the involvement of the MBs in visual tasks

like visual context generalization and resolving contradictory visual cues (Liu et

al., 1999; Tang & Guo, 2001).

2. Biological Background on Mushroom Bodies - Drosophila as an Example

Classical aversive or reward odor conditioning experiments in the fruit fly

Drosophila (Schwaerzel et al., 2003; Schroll et al., 2006) have shown that acqui-

sition of a memory, its stabilization and retrieval all require intact MBs (Kasuya et
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al., 2009; Liu & Davis, 2006). Their neuroarchitecture, their input/output relations

and biochemistry are worked out in quite some detail (e.g. Gerber et al. (2004);

Liu & Davis (2006)). Over the years, behavioral evidences accumulated for ad-

ditional pivotal roles of the MBs in non-olfactory behaviors. Liu et al. (1999)

reported a function in discriminating between visual background and objects to

be avoided in classical aversive conditioning experiments. Tang & Guo (2001)

found a role for the MBs in disentangling contradictory visual cues when it came

to decisions which object to avoid. The visual pathway to the MBs of flies is not

anatomically known to date.

Mutations affecting olfactory and visual memory formation in Drosophila are

also affecting short-term visual processes relevant to selective attention. A com-

mon component of these systems appears to be the MBs that might be involved

in generating oscillatory brain activity required for attention-like processes in the

fly brain (van Swinderen, 2007; van Swinderen et al., 2009). We will therefore

concentrate on the neuroanatomical details of the olfactory learning and memory

pathway of the fruit fly assuming that the MBs, first serving olfaction, had turned

out in evolution to be a “universally useful” learning network. Thus other sensory

modalities may have been fitted into a very similar neuroanatomical structure pre-

existing for olfaction-related behaviors.

The computational MB-model shown in Figure 1 takes into account the actual

biological organization of the olfactory pathway in flies consisting of the antennal

lobes (AL), projection neurons of the antennal lobes (AL-PNs), the lateral horn

(LH), the MB intrinsic Kenyon cells (KC), and extrinsic MB neurons (MB-EN1-4)

as well as octopaminergic neurons (OAN) and dopaminergic Neurons (DAN). Ol-

factory sensory neurons (ORN) are excited by different odorant components and
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project, depending on their odor-receptor type, to one of the about 62 glomeruli

of the AL (Fishilevich & Vosshall, 2005).

About 150 excitatory projection neurons (cholinergic) emerge from the AL

(Tanaka et al., 2008), and deliver their preprocessed information to the calices

(the input region of the MBs) and the lateral horn region (responsible for congen-

ital behavior and direct responses to olfactory stimuli). At the level of the AL

excitatory and inhibitory interneurons interact in the first preprocessing of olfac-

tory information and the AL-PNs convey this pattern of activation. On average,

each of the 2500 KCs receives input from ten AL-PNs (Turner et al., 2008) so that

single KCs represent different combinations of odorants.

Detailed studies on the post- and presynaptic organization of the KCs at the

level of the calices revealed that α − /β− and γ−neurons can form post- and

presynaptic areas, whereas α′ − /β′−neurons exhibit just postsynaptic sites at

their dendritic branches (Christiansen et al., 2011). Synaptic input and output

areas are organized in calycal microglomerular elements. Claw-like postsynap-

tic endings of several KCs enclose a given presynaptic projection neuron bouton.

Therefore, one projection-neuron is able to contact different classes of KCs in

perfect synchrony (Leiss et al., 2009). For instance, two copies of the same infor-

mation might exist in different systems for differential processing. Christiansen et

al. (2011) suggested that the synaptic organization is suited for dendro-dendritic

(i.e. bi-directional) communication between different KCs at the level of the ca-

lyx. Perez-Orive et al. (2002) reported inhibitory input from the lateral horn into

the calyx in locusts. This input leads to 20Hz-oscillations within the calyx and

seems to shut off projection neuron input every 50ms (Nowotny et al., 2003). In

addition to the sparseness in time there is a sparse code implemented in the way
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how projection neurons converge onto individual KCs (Turner et al., 2008). Re-

spective connections between the lateral horn and MB calices are known also in

Drosophila, but their direction is up to date undetermined. According to Turner et

al. (2008) sparse activity is useful in structures involved in memory in part because

sparseness tends to reduce representation overlaps.

Neuroanatomical studies in Drosophila revealed arborizations of extrinsic and

intrinsic MB neurons across the peduncle and mainly the lobe system. KCs have

their dendritic specializations in the calyx, their axons run through the peduncle

of the MB and bifurcate at its end into different MB-lobes. The γ-neurons run into

the medial γ-lobe (and some bifurcate into a very small ”heel”), α-/β-neurons bi-

furcate into the medial β- and the vertical α−lobe. The α′−/ β′-neurons bifurcate

into the medial β′- and the vertical α′−lobe (Crittenden et al., 1998). The lobes

are the output region of the MBs and also a region for modulatory inputs (Krashes

et al., 2009; Riemensperger et al., 2011).

Intrinsic neurons provide an alternative modulation pathway between different

KCs and/or KCs and other protocerebral brain areas. Extrinsic neurons, on the

other side, may be able to bind sensory information processed earlier in different

lobes before or after any kind of modulation (see Fig. 1 EN-MB1-4).

MB modulation is one of the most interesting computational features for un-

derstanding olfactory-memory formation, consolidation and retrieval. To this end

the MB model by Tanaka et al. (2008) offers a possible explanation by allocating

MB substructures to different modulation units. The model takes the three dif-

ferent KC types and their specific neuroanatomy into account and considers the

organization of the MB-lobes into segments. Those segments are defined by the

arborization of extrinsic MB neurons. The β− and β′-lobes are subdivided into
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two and the α− and α′−lobes into three segments per strata. Via these functional

units the behavioral output of the MBs can be modulated. From here, for example,

specific extrinsic MB neurons arborise, which are involved in the formation of a

labile aversive memory (Aso et al., 2010), whereas some others help to integrate

the internal state of hunger and appetitive memory in the fashion of a motivational

switch (Krashes et al., 2009).

Some of the MB-ENs specified as octopaminergic neurons (OAN; Busch et

al. (2009)) and others as dopaminergic neuron (DAN; Mao & Davis (2009)). The

OANs are known to mediate the unconditioned stimulus in the reward processing

(Schwaerzel et al., 2003; Schroll et al., 2006). The reward neuron orthologous

to the well-known VUMmx1-neuron in honeybees (Hammer , 1993) is the OA-

vUMa2 neuron in flies (Busch et al., 2009).

The DANs play important roles in the acquisition of aversive and appetitive

olfactory memory in flies (Fig.1 OAN and DAN; Kim et al. (2007)). Their input

to the MB subdivisions is weighing the processed information in the KCs, so that

the behavioral outcome differs depending on the association of the stimulus with

punishment or reward.

And last but not least KCs of the β− and γ−lobes give rise to a functional

feedback from these lobes centrifugally out to the antennal lobes via extrinsic MB

neurons as shown in Fig. 1: EN-MB3 (Hu et al., 2010). Hu et al. (2010) reported

a gain increase in the antennal lobes caused by this modulatory influence which

may account for the formation of expectations.

Up to date there is no information on the extrinsic neurons connecting the MBs

with premotor areas of the fly brain. Evidence comes from behavioral studies.

Flies with ablated MBs show neither olfactory conditioned avoidance nor condi-
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tioned appetitive locomotor behavior and abnormal variations in their locomotor

activity, suggesting premotor pathways which can be strengthened by learning and

a general regulation of premotor areas by the influence of the MBs (Martin et al.,

1998; Serway et al., 2009).

Taking inspiration primarily from the fly system and from the different com-

putational and learning capabilities of insect MBs, here a neural architecture is

proposed which is useful also for visual tasks to be integrated with models of the

Central Complex responsible for visual orientation. Involvement of the fly MBs in

respective tasks is based on behavioral evidence. However, the much more elab-

orate honeybee MB system does have known visual inputs to the calyces (Ehmer

& Gronenberg, 2002). Also the organization of the visual inputs to the fly MB

might be not so dissimilar to the olfactory system, as parallels in the glomerular

organization of the visual input at the transition from the optic lobes to the lateral

protocerebrum of flies are described (Mu et al., 2012; Strausfeld et al., 2007).

The dimension of the network of the proposed computational model, in terms

of a specific number of neurons and connections, does not match one to one with

its biological counterpart. It indeed represents a scaled version ready for direct im-

plementation in hardware for robot control applications (Arena et al., 2007, 2008).

However, the neural architecture and biological structure have been maintained in

our model.

For the learning algorithms we propose that information reaching the α
′ −

/β
′−lobes is delayed during the path, so that the neural activity within the two

lobe systems represents the current input (α − /β−lobes) and the previous one

(α′ − /β
′−lobes). The whole neural network is modeled using lattices of spiking

neurons. Moreover, learning mechanisms based on the Spike-Timing Dependent
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Plasticity (STDP) are used to associate the KCs activity to a premotor area (Arena

et al., 2009). Similar structures Central Pattern Generators have been already

developed and can be integrated for a complete control of legged robots (Arena et

al., 2003, 2005).

3. The Proposed Neural Architecture

The spiking networks used to model the insect brain blocks are based on

the Izhikevich spiking neuron, proposed in Izhikevich (2003). Izhikevich neural

model is well known in the literature and offers many advantages from the com-

putational point of view. The model is represented by the following differential

equations:

v̇ = 0.04v2 + 5v + 140− u+ I

u̇ = a(bv − u)
(1)

with the spike-resetting

if v ≥ 0.03, then

 v ← c

u← u+ d
(2)

where v is the membrane potential of the neuron, u is a recovery variable and I

is the synaptic current. The value used for the parameters are different between

ALs and MBs. In the first case the Tonic Spiking model has been used, whereas to

model the KCs the parameters have been optimized to guarantee an efficient and

robust clustering formation capability as explained in the next sections.

Neurons are connected through synapses; the synaptic model transforms the

spiking dynamics of the pre-synaptic neuron into a current that excites the post-
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synaptic one. The mathematical response of the synapses to a pre-synaptic spike

is ruled by the following equation:

ε(t) =

 Wt/τ exp (1− t/τ), if t > 0

0 , if t < 0
(3)

where t is the time lasted from the emitted spike, τ is the time constant and W

is the efficiency of the synapse. This last parameter can be modulated with expe-

rience. The STDP can reproduce Hebbian learning in biological neural networks

(Song et al., 2000; Song & Abbott, 2001). The algorithm works on the synaptic

weights, modifying them according to the temporal sequence of occurring spikes.

The updating rule can be expressed by the following formula:

∆W =

 A+ exp (∆t/τ+), if ∆t < 0

−A− exp (∆t/τ−), if ∆t > 0
(4)

where ∆t is the time delay between pre and post synaptic spikes. In this way the

synapse is reinforced if the pre-synaptic spike happens before the post-synaptic

one, it is weakened in the opposite situation. Parameters τ+ and τ− represent

the slope of exponential functions, whereas positive constants A+ and A− repre-

sent the maximum variation of the synaptic weight. Applications of this learning

paradigm to robot control, together with details on the parameters, are reported in

Arena et al. (2009b). All the equations are solved using the Euler method with an

integration time of 0.08 ms.

3.1. Antennal Lobe Model

Inspired by the insects’ ALs, we can assume to have a layer able to codify the

odor components (i.e. odorants) or, moving to the visual domain, the extracted
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features of objects. As in the insect ALs each glomerulus is able to detect a spe-

cific odorant (or a specific side chain of different odorants), in our model each

neuron in this layer encodes a particular aspect related to a detected object. Neu-

rons within the AL model are organized in groups. Each group codifies a kind

of feature or odorant, and neurons in the same group codify different values or

intensity of that feature. Neurons in the same group are linked together through

inhibitory synapses. This topology implies that, when the AL layer is stimulated,

after a short transient time, only one neuron in each group remains excited, accord-

ing to a winner-takes-all topology. Neurons in different groups are linked together

through plastic synapses, reinforced when neurons are firing together, according

to the Hebbian rule. Therefore, when an odor is presented to the network, it is

decomposed within the AL in its relevant odorant features, and the corresponding

neuron of each feature group remains excited.

In the proposed simulations, the AL layer is constructed of a 4x4 lattice. In

particular, there are four groups of neurons (f1, f2, f3 and f4), and each group is

made of four neurons (for instance, the neuron j in the group fi will be called

fij). Neurons in the same group are connected to each other through inhibitory

synapses, with a synaptic efficiency WAL = −3. Neurons in different groups that,

after the presentation of an object, fire together, are increasing the efficiency of the

synaptic connection with a ∆WAL = 2. The initial value of such synapses is zero.

When an object is detected, the neurons of the first layer encoding the features of

that object are excited with an input current IAL = 70pA.

The AL model topology is inspired by the biological case (Masse et al., 2009),

in which excitatory and inhibitory connections allow the interaction between glomeruli

in order to realize the primary odors representation. Each neuron in the AL layer
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has a probability P = 0.25 of being connected to the KCs. The choice of the sparse

connections between the first and the second layer is directly drawn from the

sparse connections in the biological counterpart (Perez-Orive et al., 2002). The

main issue is related to the design of connections within each layer. The synapses

between the first and second layer have a fixed efficiency of WAL,KC = 10.

3.2. Model of the Mushroom Body Lobes and their Interaction with the Lateral

Horn

Like in the biological counterpart, and as outlined in the previous section, the

KCs of the MBs project, through the peduncle, to five main appendices, called

lobes. They possess roughly the same topology, but were shown to serve different

functions. Our architecture is restricted to model the structure and functions of the

α− /β−lobes, and the α′ − /β
′−lobes, divided into two main networks. The two

networks representing the KCs, project random dendritic arborizations to the ALs.

Each network is designed so as to show a cooperative-competitive dynamics: if

excited, the neurons in the AL layer begin a competition and, after a transient,

only one cluster of neurons will remain active and stable. The LH model resets

both the networks each 120 ms.

In our architecture each lobe is a 9x9 lattice of neurons with a toroidal topol-

ogy. The neurons in this layer are all connected to each other according to the

paradigm of local excitation and global inhibition. A neighborhood of radius

r = 1 is defined. In this way, each neuron is connected to the neurons in its

neighborhood and with itself through excitatory synapses with an efficiency of

WKC
near = 50. It is also connected with the other neurons of the lattice through

inhibitory synapses with an efficiency of WKC
far = −30. This set of connections

gives the network its clustering capabilities (Arena et al., 2011). The time constant
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used for fast excitatory and inhibitory synapses in the network is τfast = 1ms.

The lobes are connected to each other through two sets of plastic synapses, one

from the α−/β−lobes to the α′−/β
′−lobes and the other set from the α′−/β

′−

to the α−/β−lobes. It is known from neurobiology that the neurons belonging to

the two clusters are morphologically different. Moreover, whereas α− /β− neu-

rons give information back to the ALs, generating feedback at the sensory stage,

the α′ − /β
′− neurons provide no output signals back into the system, at the level

of the calices. So we can assume that the information which arrives to these lobes

is retained there and used as a kind of backup copy for memory purposes. In

particular this is analogous to hypothesize that the signals coming from the ALs

through the calices are delayed while arriving in the α
′ − /β

′−lobes. The imple-

mentation of this concept implies that the winning cluster in the α − /β−lobes

represents the odor presented to the ALs at the actual step, whereas the winning

cluster in the α
′ − /β

′−lobes represents the odor presented to the ALs at the pre-

vious time step. The synapses between the lobe systems are reinforced when two

clusters in different lobes are concurrently active. This structure can be used to

detect whether the object presented to the ALs remains the same in two subse-

quent steps. In fact, if this is true, the plastic synapses between the lobe systems

create a positive loop between the clusters in the two lobe systems: this allows

the networks to increase the spiking rate of the active neurons. We will assume

also to have a neuron sensitive to the firing activity of the α− /β−lobes network.

The sequence of the network evolution is schematically shown in Fig. 2 where, in

the first step, two subsequent presentations of the same object generate a positive

loop between the two lobe systems and a corresponding increase of spiking rate,

whereas during the following presentation, a different object is identified as a con-
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sequence a loop is no longer generated and the spiking activity within the lobes

is no longer boosted. During the first 1000 integration steps, the winning clusters

are able to emerge independently in the two lobe systems. Soon after the synaptic

connections between the winning clusters are strengthened and the effect of the

connections is evaluated for another 500 integration steps. Only if the cluster as-

sociated with the first object in the α′ − /β′−lobes and that one associated with

the second object in the α − /β−lobes are the same (see Fig. 2 second column,

the yellow and red dot indicating the winning clusters are in the same position), a

positive loop can be created. If the two active clusters in the two lobe structures

are not associated with the same object, the positive recurrent connections are not

able to create a loop as shown in the last case examined in Fig. 2. In our model

the mean spiking activity of the α − /β−lobes is encoded in a neuron used to

discriminate the matching/no-matching events.

3.3. Premotor Area

Biological experiments revealed that context generalisation, visual attention,

salience based fixation and decision making are all MB mediated behaviors (Liu et

al., 1999; van Swinderen et al., 2009; Tang & Guo, 2001; Xi et al., 2008; Zhang et

al., 2007). Furthermore, aspects of the control of motor activity are also linked to

the MBs. For example, initial motor activity in MB-ablated flies is high, whereas

long-term measurements show a decrease in motor activity (Serway et al., 2009;

Martin et al., 1998).

In the proposed model the activity of the KCs in the MB-lobes is finally used to

control the system behavior, making a link to the Premotor Area primarily useful

for robot control puerposes. Let us consider a simple choice: the agent can decide

if the presented object is attractive and worth to be followed or not. The MBs
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and the Premotor Area are connected via an associative structure that uses the

STDP paradigm for a positive/negative-based reinforcement learning. In particu-

lar, four different neurons were considered: the Reinforcement Neuron (RN), the

Matching Neuron (SN), the No-Matching Neuron (DN) and the Premotor Neuron

(PmN). The network topology is depicted in Fig. 3. When the reward signal is ac-

tive, an input current of IRN = 100pA is provided to the RN. The RN is connected

to the PmN through a fixed synapse, WRN = 40, representing the unconditioned

response to the reward. The SN is a special neuron that we will assume to be sen-

sitive to the mean spiking activity of the α−/β−lobes. In particular, if the activity

of these lobes is larger than a given threshold, the SN is active, excited through a

constant current ISN = 40pA. The SN is connected to the PmN through a plastic

synapse, as well as the DN that is spontaneously active but can be inhibited by the

SN. Moreover, another set of plastic STDP synapses links the α − /β− neurons

to the PmN for a classical associative learning purpose.

4. Simulation Results

Inspired by the biological background, a set of experiments on learning in MBs

are proposed in this section. The setup is able to learn to associate a targeting

behavior to specific odors, depending on the specific odorant features, using a

classical conditioning mechanism. At the same time, a more complex kind of

learning, based on the delayed matching-to sample task has been considered.

In a first experiment the capability of the network to solve a classical condi-

tioning task is shown. The simulation is divided into two phases, a learning and a

test phase, and it has been repeated with two different testing setups. In particular,

in the learning phase a sequence of ten odors (here simulated through abstract ob-
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jects) is presented to the network. We are assuming to have three different odors:

A, B and C. We assume that odor A is represented by odorant features associated

with neurons f11, f21, f31 and f41 of the AL layer, odor B is represented by neurons

f12, f22, f32 and f42 and odor C by the neurons f13, f23, f33 and f43. We associate

a positive reinforcement signal to odor A and so, whenever odor A is presented,

the reinforcement neuron is also excited. The STDP is then used to establish the

correlation between odor A, represented by a cluster in the α − /β−lobes, and

the PmN. During the subsequent test phase, no reward is given and the network

must use the stored experience to make a choice that is visible in terms of level of

activation of the PmN. In a second experiment the capability of the architecture

to implement a more sophisticated kind of learning is investigated. In this case,

the architecture should learn to activate the PmN only if two matching objects are

presented in sequence, according to the matching-to-sample paradigm. In order

to avoid possible ambiguities, we indicate as simulation step the interval between

two different presentations of objects (1500 integration steps), whereas the in-

tegration step corresponds to 0.08 ms. The STDP is then used to establish the

connection between the SN, active only when the loop interaction between lobes

indicates the presence of a persistent object, and the PmN. As it is possible to no-

tice from Fig. 4, the presence of loop connections between the lobes increases the

spiking activity. In particular, Fig. 5 indicates that it is possible to find a threshold

in the neural activity of the α− /β−lobes to distinguish the activity in the case of

loop and no-loop connection between the lobe systems.

Fig. 6 shows the evolution of the membrane potential of the PmN and re-

ward signal provided during the learning phase in the first and second experiment.

During the learning phase the PmN follows the reward: in the first case associated
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with odor A and in the second case associated with the Matching event. The evo-

lution of the synaptic weights subject to STDP is shown in Fig. 7 where only the

trend of the winning neurons in the α− /β−lobes is shown. It is evident from the

weights evolution: in the first case the system learns the correlation between the

reward and the odor A, whereas in the second case the initial ambiguity between

odor A and a Matching event due to the particular sequence of presented objects

is solved around the end of the simulation, when the correlation between reward

and Matching event is well established. However the STDP learning rule is not

only applied to the winning neuron (i.e. the most active one) but also to the other

active neurons in the winning cluster of the α − /β−lobes lattice. Finally, the

behavior of the network was tested after the learning phase, without presenting

a reward signal (see Fig. 8). The knowledge, acquired in the form of synaptic

weights, is able to correctly activate the PmN either when the preference for odor

A is learned or when the preference for Matching is formed. In this last case the

network is able to identify Matching events even if odors never presented before

are given as input (i.e. new odor C).

5. Discussion and Conclusions

Insects are a point of reference in neuroscience and their autonomous learning

capabilities are amazing considering their tiny brain dimensions and their neu-

ronal connectivity. Physiology and biochemistry of these intriguing architectures

have been deeply investigated in these last years both to understand the sources

of these astonishing capabilities and to design powerful autonomous machines

and control algorithms. Inspired by biological evidences in honeybees and flies,

a neural architecture has been designed and tested in simulations. The architec-
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ture derives from the olfactory and learning system primarily of flies and was

found able to solve classical conditioning but also more complex tasks, not yet

discovered in flies, like the delayed matching-to-sample tasks. The network was

suitably scaled, in terms of dimensions, with respect to the biological counterpart,

to provide both an efficient and rapid design using conventional computer archi-

tectures, and a direct shortcut to an efficient hardware implementation, in view of

controlling, in the near future, one of the robot prototypes available in our labs.

To understand neural circuits in insect brains, several approaches can be fol-

lowed concurrently: both behavioral and neurophysiological experiments, and the

realization of computational models at different levels of complexity.

Interesting examples of MB modeling are available in the literature. A well-

known model for olfactory associative learning was proposed by Scherer et al.

(2003). This model addresses the larval stage, reproducing the effect of positive

and negative reinforcements in olfactory conditioning. On the basis of these bi-

ological evidences, other ideas were developed to design biologically plausible

models of the MBs. A more detailed analysis was performed by Turner et al.

(2008) who addressed the olfactory representation in Drosophila on the basis of

KC in-vivo recordings.

Smith et al. (2008) designed a high-level computational model of MBs for as-

sociative learning using simplified models of neurons and synapses and a learning

rule based on activity dependent pre-synaptic facilitation. The developed model,

in order to fill the gaps in existing knowledge, acquired some information from

invertebrate studies and in particular the synaptic mechanisms underlying learn-

ing and memory in Aplysia. This procedure has been followed also in our present

study, where knowledge on the MB functions was taken from bees and other in-
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sects and transferred to Drosophila. The feedback mechanisms used in Smith et

al. (2008) to stabilize the learning procedure allow to increase synaptic strength at

an initial level appropriate for an association and to prevent strength increase for

established associations. Our model uses STDP and Hebbian learning to create

associations between stimuli and we hypothesized that the matching of similar

samples can be obtained through resonance using a positive feedback loop. How-

ever, the feedback mechanisms used in Smith et al. (2008) to avoid the further

increase of synaptic weights for established associations will be considered to

further refine the proposed model at the level of the pre-motor area for behavior

selection.

Self-organization properties of the MBs are discussed in Nowotny et al. (2005).

Their model is based on spiking neurons and synaptic plasticity, distributed through

different layers. It is able to show consistent recognition and classification of

odors. In their study the MBs are assumed to be multi-modal integration centers

combining olfactory and visual inputs. As in our current model, their system ca-

pabilities are independent of the type and source of information processed in the

MBs.

Wessnitzer et al. (2012) investigated the interaction of MBs and ALs in non-

elemental learning. Different levels of learning and reinforcement mechanisms

were considered at the stage of the KCs to create a coincidence detector and non-

elemental learning. Our present study considers learning at the KC layer and

also plasticity at the level of the AL as suggested by Sachse & Galizia (2002).

They had applied important filtering mechanisms to reduce noise and reconstruct

missing features directly at the input level. Moreover, the different roles of specific

lobes in the MBs, not considered in Wessnitzer et al. (2012), has been addressed
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in our current computational model.

According to the authors, the learning capacity of the model by Wessnitzer et

al. (2012), which is a simplification of the fly MBs, seems to be larger than the

capacity shown by flies in shock-odor association experiments. Our current model

has not been compared to fly experiments, which do not exist to date. However,

the model shows that the MB structure is well suited for performing matching-to-

sample tasks.

In the actual model, as previously outlined, single objects are consecutively

presented to the network, which has to decide if the actually presented object

matches or not the previously presented one. Our model does neither take notice

of the type of features shown by the objects, nor of the fact that multiple objects

could be contemporarily present in the environment, but considers the object pre-

sented to the network as the results of a segmentation. Moreover, the network

parameters were designed to allow a learning convergence within a few reward

cycles. This last choice was adopted in view of a robotic implementation of the

network. However, the network reported here shows the key ingredients for mod-

eling a generalization of the matching-to-sample task: the concept of sameness.

In fact, biological experiments in honeybees present learning campaigns involv-

ing much longer series of presentations and reward cycles before the animals grasp

the concept of sameness. Moreover, several sensory modalities are commonly in-

volved. All these aspects could be considered in a generalization of our network,

which therefore could be useful to model the concept of sameness.

In conclusion, the model architecture discussed here represents a fundamental

building block toward an artificial neural processing structure unifying different

functionalities, and performing different behaviors, that biological counterparts
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are able to show.
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Figure 1: Block scheme of the processing of odor stimuli in insects. Olfactory receptor neurons

(ORN) transfer information to the Antennal Lobes (AL). Each of the 62 glomeruli there is specific

for a particular odor receptor. The ALs’ activity is transferred through the Projection Neurons

(AL-PN) to the Kenyon Cells (KC) in the Mushroom Body (MB) and to the Lateral Horn (LH)

region. The calyx of the MB is the KC input region for PN odor information, but KCs have

also mixed synaptic terminalia (postsynaptic (open semicircle) and presynaptic (full semicircle)

allowing for inter-KC traffic. The peduncle of the MB is composed of KC axons which project

into five different lobes of the lobe system: (α − /β−neurons (green) bifurcate in the α− and

β−lobe, α′ − /β′−neurons (yellow) bifurcate in the α′− and β′−lobe, γ-neurons (red) project

in the γ-lobe. The KCs, through axo-axonal connections lead to the formation of spatio-temporal

patterns at the level of the lobes (MB-EN1). Projections from the lobes to the AL would be well

suited for controlling filtering of sensory information there (e.g. expectation driven selective gain

control). MB extrinsic neurons (MB-EN3) coming from the LH are resetting the MB activity

with inhibitory input to the calyx. Octopaminergic Neurons (OAN) mediate the unconditioned

stimulus in the reward processing, whereas dopaminergic Neurons (DAN) play important roles

in the acquisition of aversive and appetitive olfactory memory. The Premotor Areas of the insect

brain are modulated by the MBs, but a direct neuronal link is unknown to date.
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Figure 2: Processing steps executed by the network during the presentation of a series of odors

(here presented through objects). When the first object is presented information about its character-

istics are transferred to the α−/β−lobes of the MBs and a cluster arises in the lattice (represented

here by objects). During the presentation of a second object the same process for the α−/β−lobes

is performed whereas the α
′ − /β

′−lobes are exited by the previously presented object. These

presentations lead to the emergence of two clusters in both of the lobe systems (i.e. after T=1000

simulation steps) and the plastic synaptic lobe-to-lobe connections are increased: the connection

between the previously winning neuron of the α − /β−lobes and the current winning neuron of

the α
′ − /β

′−lobes is strengthened together with the synapses between the current α
′ − /β

′−

winner and the current α− /β−winner. The mean spiking activity of the α− /β−lobes (f2
mean)

computed in the interval [1000 - 1500] integration steps is then compared with the activity without

the lobe-to-lobe connection (f1
mean). If a loop has been created (i.e. the winning neuron in the

α − /β−lobes is in the same position) a relevant increase in the spiking rate is obtained allowing

the matching/no-matching discrimination.
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Figure 3: Scheme of the interaction between the α− /β−lobe layer in the MBs and the Premotor

Area. Plastic synapses (dashed lines) connect the lobe layer with the Premotor Neuron (PmN) as

well as the Matching/No-Matching Neurons (SN and DN) with PmN. Fixed synapses are shown as

solid lines (for the sake of clarity only a subset of connections coming from the α−/β−lobe layer

is visible in the scheme). If the spiking activity of the lobe layer is high enough, the generated

current is able to activate the SN that otherwise is inhibited by the current ISN . The SN inhibits

the DN that is excited by a constant current IDN .
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Figure 4: Clusters of spiking activity in the α− /β− and α
′ − /β

′−lobes in the case of loop and

no loop connection between lobes. In the first case the activity of the networks is raised. The color

indicates the level of activity in terms of frequency following the level reported in the frequency

axis; warmer colors represent higher activity.
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Figure 5: Statistical distribution obtained over 500 simulations of the mean spiking activity of the

α − /β−lobes after the increase of the feedback connections between lobes. When a loop arises,

the spiking rate is significantly increased and choosing a threshold at f = 1632 Hz it is possible

to distinguish the Matching/No-Matching of two consecutive presented objects, with an error of

about 3%.
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Figure 6: Evolution of the membrane potential of the PmN and reward signal provided during the

learning phase. In simulation (a) the object A is rewarded whereas in (b) the same sequence of

objects is presented as in simulation (a), but the Matching is reinforced. When the PmN is active

the system indicates its preference for the presented object and a following behavior is elicited.
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Figure 7: Evolution of the synaptic weights to the PmN, when the object A is rewarded (a) and

when the Matching event is reinforced (b). Only the weights associated with the winner neuron

(i.e. the most active one) are shown even if all the active neurons in the winning cluster are subject

to the STDP learning.
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Figure 8: Results of the testing phase when the reward in no longer provided to the system and an

autonomous decision has to be taken. The last simulation step of the learning phase (grey lines)

and three new steps for the test phase (black lines) are shown. After learning, in which object A

was rewarded (Fig. 6(a)), the system is able to follow A also during the test phase (a) and does

not show any preference when new objects are presented (b). After learning, during which each

Matching event is reinforced (Fig. 6(b)), the system is able to recognize autonomously successive

presentations of the same object (c) even if it was never shown before to the network (d).

36


