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Abstract— Neural centers devoted to spatial memory and During spatial navigation, the head orientation of the atim
path integration were largely studied in rats and in different js encoded internally by a neural persistent activity in the
insect species like ants and bees. In this paper a neural- heaq. girection system. A self-sustained hill of activignc

based model for the formation of a spatial working memory is b ted i lati f itat hile oth
proposed mirroring some peculiarities of theDrosophila central € created In a population of excitatory neurons while other

brain and in particular the ellipsoid body. Simulation results are ~ two rings of inhibitory neurons are used to shift the positio
reported opening the way to applications on roving platforms.  of the peak of spiking activity when the animal turns its head

|. INTRODUCTION to a new direction, depending on the angular head velocity

L . . . 8
B loinspired solutions for visual place learning and patrL ]Migrating from mammals to insects,Drosophila
integration are widely investigated in view of the"melanogaster is particularly interesting, since it allows,

application to robotic systems. Within the animal world; di through the application of genetic manipulation tools, to

feient |risect SPecies havigate in cluttered environmesitigu _unravel the brain areas and the neural processes involved in
orientation mechamsms that allow both to track t.empcyarilthe generation of a specific behavior. As already mentioned,
obscured objects and to find a place of relevant interest I'ITF has been demonstrated that insects are capable of visual

f"IfOOd source or ihe nest (e.g. landmark navigation_ anc_j P ‘hce learning, that is the ability to use spatial inforroati
integration). Homing mechanisms were deeply studied in thg oo specific locations identifying and remembering

desert antCataglyphis [1]. This insect is able to return 0 \iq o1 features such as size, color and contour orientation

its ne_st after long a“?' tortuous fqragmg excursions. Th'iﬁsects are also able to solve the Morris water maze problem
behavior can be explained by path integration, a mechanisqyy; - However, it is less known about the neural circuits

particularly important in unfamiliar terrain. However,tha s megiate these behaviors and what kind of structures are
integration systems that depend exclusively on self-geadr necessary for visual place learning

motion signals have accuracy problems due to rapid accu-j, naqre, flies do not create a nest like other insects and
mulation of errors [2]. In familiar environments, navigati

. ) ) X , especially when target
familiar landmark is found. Path integration can be useﬂ]oves out of sight. The capability to retain, recall and

to reach the successive landmark giving also a degree o ate such positional information into guiding beloawi
reliability to landmarks solving ambiguity problems [3].

N | architect ble t del th iation befn .needs the formation of a spatial working memory.
euralarchitectures, able to modet ineé navigation beMavio e getoyr paradigm is just an example used to demon-

of Cataglyphisants,.were prop osed cong,ide.ri.ng neural Stru%'trate the capability obrosophila melanogaster to store the
tures based on chains of excnatory. and |nh|b|tpry pOpun_ha_Il position of a target when it moves out of sight also after the
mutually coupled [4]. The formation of a hill of activity resentation of a distracter [11], [12]
within the excita’iory popglation Is the key element_ used_ tg Thanks to genetic manipulation tools available on this
sot?hre the riieliral mforma(;lon rttailiated ttp tih? ageritt(_)rleurmati insect, by targeted manipulations of neural centers in the
ther models proposed mathematical Tormulations .us"]grosophila brain, the fundamental role of the central com-
smusoidal arrays, which allow an eff|C|erit representatibn plex and in particular of the ellipsoid body (EB) has been
vector mformaitlon_ [5]. Moreover, interesting approaches identified in the spatial memory formation process.
landmark navigation using recurrent ne_ural networ|_<s WEre one prominent type of neuronal cells of the ellipsoid body
also pi;oposed to exiin_law:jthe a7nts iti)ehaviior [i?]' Applicasio Jis the group of GABAergic ring neurons. The fibres of these
on r% %tslwere rea IIZ(te' n 1[ ] w eizre the onf1e VI(Iath'Er: 'Reurons run in a prominent tract, the RF tract (ring-neuron
_erico et tlr? ﬁ pgpuglonto circular array ot cells aE\nd tangential fanshaped- body neuron tract), and formybush
integrate the heading input. thin endings in the ipsilateral lateral triangle (ltr) anielp
Interesting studies were also performed on rats where he L endings in the ellipsoid body (i.e. near the ltr, ther
direction cells were identified in the limbic system [8], [9] of the R neurons split to send dendrites into the ’Itr and axon
Paolo Arena, Salvatore Maceo and Luca Patané are with perbnento  into the EB [13]). Four different kinds of ring neuron (R1 to
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R1 is restricted to the inner zone, that of R2 to the oute .- -~
zone, and that of R3 to both zones. R4 neurons project fro
the periphery inwards and arborize in the outermost zon
The GABAergic ring neurons of the ellipsoid body in the
central brain are necessary and their plasticity is sufftcie PoPulationly
for a functional spatial orientation memory in flies [11].

In this paper, on the basis of the neural model propose
in [8] an adaptation to the insect EB structure has bee Population E

—— GABA

<— NMDA
<— AMPA

. €<— External

considered. Moreover an additional processing level red d (poisin el
for the integration and exploitation of the spatial infotioa 1800 Hz)

contained in the spiking neural structure was included. I(8)

(Landmark)
Il. NEURAL MODEL Population I,

The neural model proposed to describe the processil
mechanisms of the ellipsoid body for the creation of
spatial working memory consists of three populations c
interconnected neurons. This kind of structure is simitar t
other existing models where a hill of spiking activity is \ .
created to store the heading position of the system infegrat
the heading Ve|ocity acquired by propriocepti\/e Senso]’s [‘Eig. 1.. Scheme of th('? el]ipsoid body model constituted bye_thlopulations
(8. The model contains one population of excitatory cellgh SCiaer (€ niben & and 1) neurons Synapie crents cre
(Ng = 20) and two populations of inhibitory cellsNG; =  connections. Two external inputs are also provided, in teesponding
20 and Ny = 20 neurons). The number of neurons used ireuron depending on the angular positiqn: a poisson trailea_t) Hz for
the network is related to the known neurobiological infor, e Peter neufons and s corsant nput it 1 cnpriserce of
mation on the central complex iDrosophila [14]. Neurons them (not shown in figure) are present in the model.
in each population are labeled by their heading directions
and distributed uniformly along a ring which runs along
the EB circular shape. The connection weights between a e
two neurons depend only on the difference between the T
angular positions. A scheme of the system is reported
Fig. 1 where the three populations of neurons, the cot
nection topology and the external inputs are reported. Ea
inhibitory population contains all-to-all connectiond\ween 6
its neurons, with synaptic weights that follow the disttibn s
reported in Fig. 2. The same connectivity is present betwet T
the two inhibitory populations (not reported in Fig. 1 for I — I S
the sake of simplicity). The excitatory neurons have all e ety
to-all connections with the inhibitory populations with a
weight profile reported in Fig. 2, whereas each neuron @fig. 2.  Weight distribution between the neurons of popafate, /; and
the inhibitory population is connected with only one neurorf®
of the excitatory population: the neuron that corresponds t
the angled + 6y in population 7, inhibits the excitatory
neuron that corresponds to the anglethis receives also a  \here ¢, is the membrane capacitance, 0.5 nF for ex-
current contribution from the neuron labeled with- 6o in itatory cells and 0.2 nF for inhibitory cellgy, is the leak
population/; (6, = 110 in the following simulations). In  conductance, 0.025S for excitatory cells and 0.0 for in-
the original model the connection scheme included all-tsipjtory cells; and/;, is the resting potential, -70 mV for both
all connections also for the interaction between thesertayeaycitatory and inhibitory cells. When the membrane pognti
[8]; the simplification presents minimum drawbacks in termgs 5 neuron reaches a threshold (i.e. -50 mV) a spike occurs
of level of noise in the network as will be discussed in th@ng the membrane potential returns to a reset potential (i.e
simulations. -60 mV). The last terny,,, (¢) represents the total synaptic

Both excitatory and inhibitory neurons are modeled bynpyt current for the cell. Every neuron receives inputsrfro
a leaky integrate-and-fire (LIF) model [15][16]. The timethe other neurons as described above, and also an external
evolution of the membrane potentisl,, (¢) of each neuron excitatory synaptic input mediated by AMPA receptors.
is described by the following equation: Synaptic currents exchanged between neurons include both

excitatory (glutamatergic) mediated by AMPA and NMDA
ConVen(t) = =g (Vi (t) = Vi) = Ly (t) (1) receptors and inhibitory (GABAergic) contribution. Désai
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used as reference point. During movements the accumulated
error can be compensated using specific landmarks placed in
known positions.
The architecture until now depicted, is able to provide
continuously the animal’s instantaneous head directiat th
is internally represented by the peak location of the bell-
shaped activity profile of the excitatory population. Tovgol
more complex tasks like the detour paradigm [11], a spatial
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ integration of the distance traveled by the agent is needed.
T Mg For sake of simplicity we consider two distinct motion
behaviors: forward movement and turning on the spot.
Fig. 3. Relation between the parameféj used to modify the frequency 14 gtore in the network the path traveled in time, an
of the Poisson train and the corresponding angular veladitgined in the . .
network. additional outer ring of neurons has been added to the
excitatory population (i.e. compass neurons). These msuro
(i.e. population P) have a match one-to-one with the popu-
. . . lation E and can be modeled with a simple linear transfer
about the synaptic connections are reported in [8] where tr?l?nction A scheme of the complete network is reported in
parameter values related to rats were considered. Howev, Irg 4 Where four distinct rings of neurons are considered
recent studies on the central complex in flies identified th_? i '

presence of several receptors [17] and in particular theeabl he synaptic connections used to connect populat|0n_ E and
NMDA for long-term memory consolidation in the ellipsoid population P neurons, are supposed to be characterized by

body [18]. a facilitating dynamics [19], and can be modeled with the

. . . followi ical :

The network receives external inputs used to prowdéJ owing dynamical system
information on the angular head velocity that is integrated .
in the system to provide the head orientation. The angular tn = U = u/F + kon(t — £:)0(Bo) @)

head velocity signal is modeled as uncorrelated Poiss&®@ spi where n=1..N, U=0, F is related to the fading memory and
trains B with frequency f=1800 Hz. Experiments with regulak s a gain related to the system speég(t — t.) represents
train of Spikes were also performed Obtaining similar ressul the Spikes emitted at timg by neurons of popu|ati0n E and
When a rotation is performed, the corresponding angulgy ) is a gating function that allows the contribution of a
velocity is provided to the network unbalancing the inpugpike at timet, only if the system is in forward motion and
on the two inhibitory populations. then By = 0H z. When the system is turning, the population
We first consider the behavior of our model in absence @ is not activated because the action is performed without
sensory and/or self-motion signals. This corresponds o tlpatial translation. The parameter F represents the rate of
case in which animals head direction is held fixed. In ougiischarge of the state variable and has been fixed to a value
model, this is implemented by setting to zemy(= 0H2) that allows to retain the information in the time window used
the head velocity bias of the external afferent inputs to th@r the simulations that is about 5s similarly to the biotmi
two inhibitory populations. In this case, the network qiyck case [11].
reaches a stationary state with a bell-shaped activity Iprofi
Because of the symmetries of the network, the peak of the [Il. SIMULATION RESULTS

activity hill can arise anywhere in the network (depending To evaluate the capabilities of the proposed neural struc-

on the initial condition). Due to the absence of synaptigyre, a series of tests have been performed. The first amhlyze

connections between cells in the excitatory populatioB, thyroblem consists in the positioning of the hill of activity @

hill of activity is generated and maintained by a combireference angle to reset the processing. Due to the symmetry

nation of uniform external eXCitatOl’y iﬂput and distritdite of the structure, depending on the initial ConditionS, the

inhibitory inputs from the two inhibitory populations. Wfie starting position of the hill is unpredictable. To force the

the frequency bias is positive (negative) a clockwise (anti- formation in a specific area of the ring a landmark is applied.

clockwise) rotation of the hill of spiking activity is obt®d. |n Fig. 5 the average firing rate within populatiofisand I,

The mapping betweeR, and the head velocity was obtainedijs shown. The behavior of populatidi is similar toI; but

characterizing the response of the network as shown in Figlightly shifted in order to create two barriers on the two

3. As previously underlined, the presence of visual land®\ar sides of the population E containing the hill in a narrow

can be helpful to improve the system performance. band. During the firsi0.5s a landmark is applied to the
Visual landmarks are modeled as an input current tgeurons next tol80° through an input current formulated

neurons in the excitatory population that corresponds ¢o thys a gaussian function:

landmark position. The landmark can be used as a calibration

mechanism: in fact the hill of activity can arise in any I:Ae*w;j’f)z ©)

position of the ring due to the symmetry of the neural

structure; the landmark can shift the hill to a specific nauro where A = 9.4nA, o = 24° and, = 180°.
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Fig. 4. Four ring network used to model the EB behavior ané&paduce
the detour experiments. The external infiuticts as a gate for the population
P avoiding an integration during the turning on the spot neamnces.

The reduction of the synaptic connections between laye
that, in our actual model, are more local than global, and tf
reduced number of neurons with respect to the original mode,
in [8], can produce a limited activity also in some neuronts ou
of the hill. However extensive simulations showed that the ()
dynamics of the network remains stable. The spikes emitted
by population E after transient, when the landmark is agplie Fig. 5. Average firing rate within the population of neuraBs I;. The
are cumulated by the population P that integrates the t;y:tiviibehavigdﬁrgmtﬁlgtreﬂ?nirﬁnsir?ci)l;’irotgsliobusizlégmghsiniffgetdrﬁaAir:a;d?\j:;k
depending on the robot speed that is used as a gain (K,fo o o fing. ginning for ©.5s 10 9
eg. 2). Through a calibration it is possible to find the gain
value that converts the neural activity into a distanceetie
expressed in a generic measurement unit. ) )

Another experiment was performed moving the agerﬁumulated error is a consequence of the processing steuctur

forward for 1s: making a rotation of30° and proceeding 2nd in particular it is due to the relative low number of
forward for anotherls, a constant speed of 1m/s wash€urons dls_trlbuted in the rings that determines the dpatia
adopted. The angular velocity was provided to the networigselution (i.e. about8” each neuron).
through aBy, = 920H = for 0.5s. Initially a landmark was  For robotic applications the spatial resolution could be im
used to facilitate the formation of the hill arourdd. The Proved to obtain performance compatible with the assigned
final outcome of the network that works as a short terrfasks. The behavior of the system can be appreciated also
spatial memory, is the estimated position and orientation &1 standard tests used in robotics like navigation on a sguar
the agent. path [20]. In this simulation each rotation @° corresponds
During the rotation the population P is disconnected froriP @ B, = 800H = applied for 0.5s, and each segment to
population E using the gating parametes= 0 in eq. 2 and a forward movement at 1 unit/s for 0.5s. In Fig. 9 the
the rotation is considered on the spot (see eq. 2). The nketwdgal trajectory is compared with the step-by-step estithate
integrates in time the speed movement of the agent making B@sition provided by the network.
estimation of its spatial position. The heading angle stdne The proposed network can also replicate the detour ex-
the system during the 3s simulation is reported in Fig. 6. Theeriment reproducing behaviors shown by real flies. When
normalized activity of population P that integrates in tithe the fly is attracted by a visual target, the CX is mainly
state of population E, is shown in Fig. 7. To obtain, step binvolved in determining the insect behavior. When the targe
step, the internally estimated current position of the agerdisappears and a distractor appears, the insect stores in
a vectorial summation is performed considering neurons the EB neural structure the current estimated position of
population P as polar representation of spatial vectors. the obscured target. This estimation can be obtained using
Finally the comparison between the real trajectory angarallax information and the distance is coded using, as
the internally memorized one is reported in Fig. 8. Theneasurement unit, the number of steps estimated to reach the
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Fig. 6. Heading angle of the agent during a 3s simulation later a
forward movement, a on-the-spot rotation I#0° is performed.
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Fig. 7. Normalized activity of Population P. The estimateasifion is
obtained performing the vector sum of the contribution afrereuron that
codifies the information in a polar coordinate system.

object. This spatial vector is coded in the neural popufatio o oz
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Fig. 9. Comparison between the real trajectory followed ey agent and
the estimated position stored in the EB.
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P. The trajectory followed while the insect is attracted by

the distractor is integrated in the network to allow theig. 10. Detour experiment: trajectory stored by the systémacted by the

recovery of the original target position within a limited distractor and estimated trajectory to reach the positioth® disappeared

time due to the fading memory. The simulation is dividedarget whose position is marked with an asterisk. The digiravas applied
’ 0

r different time windows from 0.8s to 1.6s and the correst of the

into three parts: first when the target disappears, the ERormation stored in the EB model about the target positieareases for
stores the target estimated position in polar coordinatégger distraction events.

charging the corresponding neuron of population P with a
current proportional to the distance (coded in number of

steps). Then the hill of activity of population E is forcedinormation accumulated in population P is used to estimate
to arise in a position rotated bys0°. Subsequently the e spatial position of the first target. The trajectory atbr

path followed during the presence of a distractor placegl, the architecture during the effect of the distractor and
at 90% is memorized. When the distractor disappears, thge estimated trajectory followed to reach the disappeared
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Fig. 8. Comparison between the real trajectory followed H®y agent and
the internal estimated position stored in the EB.

target are reported in Fig. 10. For further analysis the rhode
will be included in a dynamic simulation environment with
a simulated fly.

IV. CONCLUSIONS

Bio-inspired solutions for spatial memory are widely in-
vestigated and different models were provided on the bdsis o
ants, bees and rats behaviors. In this paper a computational
model of theDrosophila ellipsoid body based on a four-ring
spiking network is proposed. The neural structure is able to
create a hill of spiking activity that moves in a ring coding
the heading angle of the insect. Several experimentsriitest
the capability of the system to store the spatial position
of the insect on a polar coordinate system. The proposed



model is able to replicate experimental results obtaingd wi
Drosophila in the detour paradigm. The architecture could be
easily improved modifying the spatial resolution for rela
robotic applications.
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