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Abstract— Neural centers devoted to spatial memory and
path integration were largely studied in rats and in different
insect species like ants and bees. In this paper a neural-
based model for the formation of a spatial working memory is
proposed mirroring some peculiarities of theDrosophila central
brain and in particular the ellipsoid body. Simulation results are
reported opening the way to applications on roving platforms.

I. I NTRODUCTION

B Ioinspired solutions for visual place learning and path
integration are widely investigated in view of their

application to robotic systems. Within the animal world, dif-
ferent insect species navigate in cluttered environments using
orientation mechanisms that allow both to track temporarily
obscured objects and to find a place of relevant interest like
a food source or the nest (e.g. landmark navigation and path
integration). Homing mechanisms were deeply studied in the
desert antCataglyphis [1]. This insect is able to return to
its nest after long and tortuous foraging excursions. This
behavior can be explained by path integration, a mechanism
particularly important in unfamiliar terrain. However, path
integration systems that depend exclusively on self-generated
motion signals have accuracy problems due to rapid accu-
mulation of errors [2]. In familiar environments, navigation
by using landmarks can either integrate or substitute path
integration. Landmark navigation can increase the accuracy
of navigation compensating the cumulative errors when a
familiar landmark is found. Path integration can be used
to reach the successive landmark giving also a degree of
reliability to landmarks solving ambiguity problems [3].

Neural architectures, able to model the navigation behavior
of Cataglyphis ants, were proposed considering neural struc-
tures based on chains of excitatory and inhibitory populations
mutually coupled [4]. The formation of a hill of activity
within the excitatory population is the key element used to
store the neural information related to the agent orientation.
Other models proposed mathematical formulations using
sinusoidal arrays, which allow an efficient representationof
vector information [5]. Moreover, interesting approachesfor
landmark navigation using recurrent neural networks were
also proposed to explain the ant’s behavior [6]. Applications
on robots were realized in [7] where the home vector is
encoded in a population of circular array of cells that
integrate the heading input.

Interesting studies were also performed on rats where head
direction cells were identified in the limbic system [8], [9].
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During spatial navigation, the head orientation of the animal
is encoded internally by a neural persistent activity in the
head-direction system. A self-sustained hill of activity can
be created in a population of excitatory neurons while other
two rings of inhibitory neurons are used to shift the position
of the peak of spiking activity when the animal turns its head
to a new direction, depending on the angular head velocity
[8].

Migrating from mammals to insects,Drosophila
melanogaster is particularly interesting, since it allows,
through the application of genetic manipulation tools, to
unravel the brain areas and the neural processes involved in
the generation of a specific behavior. As already mentioned,
it has been demonstrated that insects are capable of visual
place learning, that is the ability to use spatial information
to recall specific locations identifying and remembering
visual features such as size, color and contour orientation;
insects are also able to solve the Morris water maze problem
[10]. However, it is less known about the neural circuits
that mediate these behaviors and what kind of structures are
necessary for visual place learning.

In nature, flies do not create a nest like other insects and
the acquisition of homing strategies could be considered not
relevant for this species. However, targeting behaviors are
commonly used: flexible goal-driven orientation requires the
storing of the position of a target, especially when target
moves out of sight. The capability to retain, recall and
integrate such positional information into guiding behaviour
needs the formation of a spatial working memory.

The detour paradigm is just an example used to demon-
strate the capability ofDrosophila melanogaster to store the
position of a target when it moves out of sight also after the
presentation of a distracter [11], [12].

Thanks to genetic manipulation tools available on this
insect, by targeted manipulations of neural centers in the
Drosophila brain, the fundamental role of the central com-
plex and in particular of the ellipsoid body (EB) has been
identified in the spatial memory formation process.

One prominent type of neuronal cells of the ellipsoid body
is the group of GABAergic ring neurons. The fibres of these
neurons run in a prominent tract, the RF tract (ring-neuron
and tangential fanshaped- body neuron tract), and form bushy
thin endings in the ipsilateral lateral triangle (ltr) and bleb-
like endings in the ellipsoid body (i.e. near the ltr, the neurites
of the R neurons split to send dendrites into the ltr, and axons
into the EB [13]). Four different kinds of ring neuron (R1 to
R4) can be distinguished by their arborization pattern around
the ellipsoid body canal. R1 and R3 neurons project outwards
from the ellipsoid body canal, whereas the arborization of



R1 is restricted to the inner zone, that of R2 to the outer
zone, and that of R3 to both zones. R4 neurons project from
the periphery inwards and arborize in the outermost zone.
The GABAergic ring neurons of the ellipsoid body in the
central brain are necessary and their plasticity is sufficient
for a functional spatial orientation memory in flies [11].

In this paper, on the basis of the neural model proposed
in [8] an adaptation to the insect EB structure has been
considered. Moreover an additional processing level needed
for the integration and exploitation of the spatial information
contained in the spiking neural structure was included.

II. N EURAL MODEL

The neural model proposed to describe the processing
mechanisms of the ellipsoid body for the creation of a
spatial working memory consists of three populations of
interconnected neurons. This kind of structure is similar to
other existing models where a hill of spiking activity is
created to store the heading position of the system integrating
the heading velocity acquired by proprioceptive sensors [4]
[8]. The model contains one population of excitatory cells
(NE = 20) and two populations of inhibitory cells (NI1 =
20 andNI2 = 20 neurons). The number of neurons used in
the network is related to the known neurobiological infor-
mation on the central complex inDrosophila [14]. Neurons
in each population are labeled by their heading directions
and distributed uniformly along a ring which runs along
the EB circular shape. The connection weights between any
two neurons depend only on the difference between their
angular positions. A scheme of the system is reported in
Fig. 1 where the three populations of neurons, the con-
nection topology and the external inputs are reported. Each
inhibitory population contains all-to-all connections between
its neurons, with synaptic weights that follow the distribution
reported in Fig. 2. The same connectivity is present between
the two inhibitory populations (not reported in Fig. 1 for
the sake of simplicity). The excitatory neurons have all-
to-all connections with the inhibitory populations with a
weight profile reported in Fig. 2, whereas each neuron of
the inhibitory population is connected with only one neuron
of the excitatory population: the neuron that corresponds to
the angleθ + θ0 in population I1, inhibits the excitatory
neuron that corresponds to the angleθ; this receives also a
current contribution from the neuron labeled withθ − θ0 in
populationI2 (θ0 = 110o in the following simulations). In
the original model the connection scheme included all-to-
all connections also for the interaction between these layers
[8]; the simplification presents minimum drawbacks in terms
of level of noise in the network as will be discussed in the
simulations.

Both excitatory and inhibitory neurons are modeled by
a leaky integrate-and-fire (LIF) model [15][16]. The time
evolution of the membrane potentialVm(t) of each neuron
is described by the following equation:

CmV̇m(t) = −gL(Vm(t)− VL)− Isyn(t) (1)

Fig. 1. Scheme of the ellipsoid body model constituted by three populations
of excitatory (E) and inhibitory (I1 andI2) neurons. Synaptic currents are
mediated by AMPA and NMDA for excitatory and GABA for inhibitory
connections. Two external inputs are also provided, in the corresponding
neuron depending on the angular position: a poisson train at1800 Hz for
all the network neurons and a constant input that acts only inpresence of
a landmark. All-to-all connections between the inhibitorylayers and within
them (not shown in figure) are present in the model.

0 18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 342
0

2

4

6

8

10

12

14

16

18

20

Theta pre − Theta post(degrees)

W
ei

gh
t F

un
ct

io
n

 

 

W
I
2
 E

W
I
1
 E

W
E I

12

Fig. 2. Weight distribution between the neurons of population E, I1 and
I2.

whereCm is the membrane capacitance, 0.5 nF for ex-
citatory cells and 0.2 nF for inhibitory cells;gL is the leak
conductance, 0.025µS for excitatory cells and 0.02µS for in-
hibitory cells; andVL is the resting potential, -70 mV for both
excitatory and inhibitory cells. When the membrane potential
of a neuron reaches a threshold (i.e. -50 mV) a spike occurs
and the membrane potential returns to a reset potential (i.e.
-60 mV). The last termIsyn(t) represents the total synaptic
input current for the cell. Every neuron receives inputs from
the other neurons as described above, and also an external
excitatory synaptic input mediated by AMPA receptors.
Synaptic currents exchanged between neurons include both
excitatory (glutamatergic) mediated by AMPA and NMDA
receptors and inhibitory (GABAergic) contribution. Details
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Fig. 3. Relation between the parameterB0 used to modify the frequency
of the Poisson train and the corresponding angular velocityobtained in the
network.

about the synaptic connections are reported in [8] where the
parameter values related to rats were considered. However,
recent studies on the central complex in flies identified the
presence of several receptors [17] and in particular the role of
NMDA for long-term memory consolidation in the ellipsoid
body [18].

The network receives external inputs used to provide
information on the angular head velocity that is integrated
in the system to provide the head orientation. The angular
head velocity signal is modeled as uncorrelated Poisson spike
trains B with frequency f=1800 Hz. Experiments with regular
train of spikes were also performed obtaining similar results.
When a rotation is performed, the corresponding angular
velocity is provided to the network unbalancing the input
on the two inhibitory populations.

We first consider the behavior of our model in absence of
sensory and/or self-motion signals. This corresponds to the
case in which animals head direction is held fixed. In our
model, this is implemented by setting to zero (B0 = 0Hz)
the head velocity bias of the external afferent inputs to the
two inhibitory populations. In this case, the network quickly
reaches a stationary state with a bell-shaped activity profile.
Because of the symmetries of the network, the peak of the
activity hill can arise anywhere in the network (depending
on the initial condition). Due to the absence of synaptic
connections between cells in the excitatory population, the
hill of activity is generated and maintained by a combi-
nation of uniform external excitatory input and distributed
inhibitory inputs from the two inhibitory populations. When
the frequency biasB0 is positive (negative) a clockwise (anti-
clockwise) rotation of the hill of spiking activity is obtained.
The mapping betweenB0 and the head velocity was obtained
characterizing the response of the network as shown in Fig.
3. As previously underlined, the presence of visual landmarks
can be helpful to improve the system performance.

Visual landmarks are modeled as an input current to
neurons in the excitatory population that corresponds to the
landmark position. The landmark can be used as a calibration
mechanism: in fact the hill of activity can arise in any
position of the ring due to the symmetry of the neural
structure; the landmark can shift the hill to a specific neuron

used as reference point. During movements the accumulated
error can be compensated using specific landmarks placed in
known positions.

The architecture until now depicted, is able to provide
continuously the animal’s instantaneous head direction that
is internally represented by the peak location of the bell-
shaped activity profile of the excitatory population. To solve
more complex tasks like the detour paradigm [11], a spatial
integration of the distance traveled by the agent is needed.
For sake of simplicity we consider two distinct motion
behaviors: forward movement and turning on the spot.

To store in the network the path traveled in time, an
additional outer ring of neurons has been added to the
excitatory population (i.e. compass neurons). These neurons
(i.e. population P) have a match one-to-one with the popu-
lation E and can be modeled with a simple linear transfer
function. A scheme of the complete network is reported in
Fig. 4 where four distinct rings of neurons are considered.
The synaptic connections used to connect population E and
population P neurons, are supposed to be characterized by
a facilitating dynamics [19], and can be modeled with the
following dynamical system:

u̇n = U − u/F + kδn(t− ts)δ(B0) (2)

where n= 1..N, U=0, F is related to the fading memory and
k is a gain related to the system speed,δn(t− ts) represents
the spikes emitted at timets by neurons of population E and
δ(B0) is a gating function that allows the contribution of a
spike at timets only if the system is in forward motion and
thenB0 = 0Hz. When the system is turning, the population
P is not activated because the action is performed without
spatial translation. The parameter F represents the rate of
discharge of the state variable and has been fixed to a value
that allows to retain the information in the time window used
for the simulations that is about 5s similarly to the biological
case [11].

III. S IMULATION RESULTS

To evaluate the capabilities of the proposed neural struc-
ture, a series of tests have been performed. The first analyzed
problem consists in the positioning of the hill of activity on a
reference angle to reset the processing. Due to the symmetry
of the structure, depending on the initial conditions, the
starting position of the hill is unpredictable. To force the
formation in a specific area of the ring a landmark is applied.
In Fig. 5 the average firing rate within populationsE andI1
is shown. The behavior of populationI2 is similar toI1 but
slightly shifted in order to create two barriers on the two
sides of the population E containing the hill in a narrow
band. During the first0.5s a landmark is applied to the
neurons next to180o through an input current formulated
as a gaussian function:

I = Ae−
(ϑ−ϑ0)2

2σ2 (3)

whereA = 9.4nA, σ = 24o andϑ0 = 180o.



Fig. 4. Four ring network used to model the EB behavior and to reproduce
the detour experiments. The external inputB acts as a gate for the population
P avoiding an integration during the turning on the spot manoeuvres.

The reduction of the synaptic connections between layers
that, in our actual model, are more local than global, and the
reduced number of neurons with respect to the original model
in [8], can produce a limited activity also in some neurons out
of the hill. However extensive simulations showed that the
dynamics of the network remains stable. The spikes emitted
by population E after transient, when the landmark is applied,
are cumulated by the population P that integrates the activity
depending on the robot speed that is used as a gain (k in
eq. 2). Through a calibration it is possible to find the gain
value that converts the neural activity into a distance traveled
expressed in a generic measurement unit.

Another experiment was performed moving the agent
forward for 1s: making a rotation of130o and proceeding
forward for another1s, a constant speed of 1m/s was
adopted. The angular velocity was provided to the network
through aB0 = 920Hz for 0.5s. Initially a landmark was
used to facilitate the formation of the hill around0o. The
final outcome of the network that works as a short term
spatial memory, is the estimated position and orientation of
the agent.

During the rotation the population P is disconnected from
population E using the gating parameterk = 0 in eq. 2 and
the rotation is considered on the spot (see eq. 2). The network
integrates in time the speed movement of the agent making an
estimation of its spatial position. The heading angle stored by
the system during the 3s simulation is reported in Fig. 6. The
normalized activity of population P that integrates in timethe
state of population E, is shown in Fig. 7. To obtain, step by
step, the internally estimated current position of the agent,
a vectorial summation is performed considering neurons in
population P as polar representation of spatial vectors.

Finally the comparison between the real trajectory and
the internally memorized one is reported in Fig. 8. The
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Fig. 5. Average firing rate within the population of neuronsE, I1. The
behavior of populationI2 is similar toI1 but slightly shifted. A landmark
is applied from the beginning for 0.5s to guide the hill formation in a given
region of the ring.

cumulated error is a consequence of the processing structure
and in particular it is due to the relative low number of
neurons distributed in the rings that determines the spatial
resolution (i.e. about18o each neuron).

For robotic applications the spatial resolution could be im-
proved to obtain performance compatible with the assigned
tasks. The behavior of the system can be appreciated also
in standard tests used in robotics like navigation on a square
path [20]. In this simulation each rotation of90o corresponds
to a Bo = 800Hz applied for 0.5s, and each segment to
a forward movement at 1 unit/s for 0.5s. In Fig. 9 the
real trajectory is compared with the step-by-step estimated
position provided by the network.

The proposed network can also replicate the detour ex-
periment reproducing behaviors shown by real flies. When
the fly is attracted by a visual target, the CX is mainly
involved in determining the insect behavior. When the target
disappears and a distractor appears, the insect stores in
the EB neural structure the current estimated position of
the obscured target. This estimation can be obtained using
parallax information and the distance is coded using, as
measurement unit, the number of steps estimated to reach the
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Fig. 6. Heading angle of the agent during a 3s simulation where after a
forward movement, a on-the-spot rotation of130

o is performed.
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Fig. 7. Normalized activity of Population P. The estimated position is
obtained performing the vector sum of the contribution of each neuron that
codifies the information in a polar coordinate system.

object. This spatial vector is coded in the neural population
P. The trajectory followed while the insect is attracted by
the distractor is integrated in the network to allow the
recovery of the original target position within a limited
time due to the fading memory. The simulation is divided
into three parts: first when the target disappears, the EB
stores the target estimated position in polar coordinates
charging the corresponding neuron of population P with a
current proportional to the distance (coded in number of
steps). Then the hill of activity of population E is forced
to arise in a position rotated by180o. Subsequently the
path followed during the presence of a distractor placed
at 90o is memorized. When the distractor disappears, the
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Fig. 8. Comparison between the real trajectory followed by the agent and
the internal estimated position stored in the EB.
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Fig. 9. Comparison between the real trajectory followed by the agent and
the estimated position stored in the EB.
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Fig. 10. Detour experiment: trajectory stored by the systemattracted by the
distractor and estimated trajectory to reach the position of the disappeared
target whose position is marked with an asterisk. The distractor was applied
for different time windows from 0.8s to 1.6s and the correctness of the
information stored in the EB model about the target positiondecreases for
longer distraction events.

information accumulated in population P is used to estimate
the spatial position of the first target. The trajectory stored
by the architecture during the effect of the distractor and
the estimated trajectory followed to reach the disappeared
target are reported in Fig. 10. For further analysis the model
will be included in a dynamic simulation environment with
a simulated fly.

IV. CONCLUSIONS

Bio-inspired solutions for spatial memory are widely in-
vestigated and different models were provided on the basis of
ants, bees and rats behaviors. In this paper a computational
model of theDrosophila ellipsoid body based on a four-ring
spiking network is proposed. The neural structure is able to
create a hill of spiking activity that moves in a ring coding
the heading angle of the insect. Several experiments illustrate
the capability of the system to store the spatial position
of the insect on a polar coordinate system. The proposed



model is able to replicate experimental results obtained with
Drosophila in the detour paradigm. The architecture could be
easily improved modifying the spatial resolution for reliable
robotic applications.
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