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Abstract

Insects are becoming a reference point in Neuroscience for the study of biologi-
cal aspects at the basis of cognitive processes. These animals have much simpler
brains with respect to higher animals, showing, at the same time, impressive ca-
pability to adaptively react and take decision in front of complex environmental
situations. In this paper we propose a neural model inspired by the insect ol-
factory system, with particular attention of the fruit fly Drosophila melanogaster.
This architecture is a multilayer spiking network, where each layer is inspired
by the structures of the insect brain mainly involved in the representation of the
olfactory information, namely the Mushroom Bodies, the Lateral Horns and the
Antennal Lobes. The Antennal Lobes layer is based on a competitive topology
between sets of neurons. Its function is to transform the sensorial information
into a pattern, projecting such information to the Mushroom Bodies layer. Here
a competitive reaction-diffusion process leads to a spontaneous emerging of clus-
ters. The Lateral Horns have been modeled as a delayed input-triggered resetting
system. Using plastic recurrent connections with the addition of simple learning
mechanisms, the structure is able to realize a top-down modulation at the input
level. This leads to the emergence of an attentional loop as well as to the arousal
of expectation based behaviors in case of subsequently presented stimuli. Sim-
ulation results and analysis on the biological plausibility of the architecture are
provided and the role of noise in the network is reported.
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1. Introduction

In the last few years an increasing interest has been paid to study simple ani-
mal brains, at the aim both to deeply understand the neurobiological details, and to
exploit the derived knowledge to build efficient bio-inspired sensing-perceiving-
acting machines. Particular attention is being devoted to the insect world, since
insects are being recognized not only as reflex-driven automata: even if their brain
structure is very small, most of them are indeed able to show such complex behav-
iors that, since a few years ago, were believed to be possible only in higher animals
like mammals or even humans. In contrast with what assumed in the last decades,
even social insect swarms capabilities are not merely related to the concept of
distributed intelligence: the complex social behavior is largely due to the intelli-
gence and adaptive behavior shown by individual agents in the colony (Dornhous
& Franks, 2008; Webb & Consi, 2001). Insects clearly show such distinct fea-
tures as learning and memory; they are able to solve tasks that require numerosity,
capability to show the “sameness versus difference” concept in action, and others
(Chittka & Niven, 2009). The worker honeybee is certainly a well-known organ-
ism for studying the fundamental principles of color vision, pattern recognition,
learning and memory, flight control, and navigation, (Menzel & Giurfa, 2006;
Srinivasan & Zhang, 2004; Srinivasan et al., 2006; Wehner, 1981). The enhanced
tools recent adopted in insect Neurophysiology allowed to shed light on the de-
tails of neural signal processing in some specific parts of insect brain responsible
for complex behaviours like attention. The insect brain areas responsible for these
processes are the Mushroom Bodies (MBs) that, together with the Lateral Horns
(LHs) are primarily devoted to olfactory learning. The spatio-temporal olfactory
information coming out from a neural structure named Antennal Lobes (ALs), is
processed and stored in spatial patterns (Huerta & Nowotny, 2009; Liu & Davis,
2006). MBs are well known for their capability to perform associative learn-
ing for odor conditioning (Scherer et al., 2003). Recently neural models inspired
by the Drosophila melanogaster and locust brain anatomy were proposed using
roughly the same number and connectivity as the olfactory biological counter-
part. The spatio-temporal coding in such neural structures has been investigated
in Nowotny et al. (2003), where a model for codifying spatio-temporal patterns
into spatial patterns was implemented. In that paper the structure exploited au-
tonomous clustering capabilities and no learning algorithms were taken into con-
sideration. In order to include specific learning capabilities into the system, the
proposed architecture is based on models of spiking networks where characteris-
tics like visual features, learning, recalling and forgetting were considered (Arena
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& Patané, 2009; Arena et al., 2010). These structures were successfully applied
to enhance the capabilities of an autonomous robot, but they were really far from
the insect skills, which are able to show other interesting capabilities like attention
and expectation based behaviors. Novel tools from Neurophysiology are contin-
uously advancing the knowledge about neural activity even in such small brains
as the fruit fly. In particular, regarding the attention process, in van Swinderen
(2007) interesting clues of the presence of attention processes were found ana-
lyzing the registered local potential field (LPF) within the fly brain. They in fact
were able to show increased LPF activity when the fly is positioned in a rotat-
ing cylinder with two alternating different objects, whereas no LPF variation was
observed when displaying twice the same object in the same setup. Moreover
learning mutants in the cAMP cascade, showing deficits in short-term memory,
did not show such neural evidence. Of course specific tests excluded that such
behavior was due to a lack of visual cues responsiveness. To host such skills, the
traditional model, mainly based on feedforward connections from the sensory to
the classification layer, should also include other kinds of feedback connections,
able to affect the input sensitivity to particular expected sensory features. Re-
cently feedback connections from MBs to the ALs have been found (Hu et al.,
2010). Here a functional role of such connections in filtering input information is
hypothesized and proposed in the developed model. This new interesting feature
allows to refine the models previously presented, adding new capabilities to the
system.

Starting from the already introduced neurobiological findings, in this paper a
new artificial model of the insect olfactory system with enhanced capabilities is
introduced. This model could explain how sophisticated attention and expectation
mechanisms arise in insects when facing with complex environments. Learning
to know in advance the input stimulus correlated with the actual one is a funda-
mental ability in living beings, useful to take the appropriate action, sometimes
life-saving. The possibility to make predictions and to modulate sensorial inputs
through expectations is the key point that the model introduced in this work does
allow. The proposed model is a multi-layer spiking neural network basically in-
spired to Nowotny et al. (2003), and including the recent findings in Hu et al.
(2010). The first layer represents the Antennal Lobes model: inputs are decom-
posed in main features, represented by feature-specific groups of neurons within
the input layer. Here a locally competitive topology is implemented, as suggested
in Neurobiology (Sachse & Galizia, 2002). This layer randomly projects connec-
tions to the second layer, which models the functionalities of the Mushroom Bod-
ies, meanly constituted by Kenyon Cells (KCs layer). Each neuron in this layer
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is connected through fast excitatory synapses to its neighborhood and, within the
same layer, through fast inhibitory synapses to the rest of the network. In order
to have a symmetric set of connections, a toroidal shape was implemented. The
KCs layer shows interesting clustering capabilities and represents the core of the
system in terms of spatio-temporal pattern formation. Recurrent connections are
present from KCs to the ALs. The Lateral Horns model, as suggested from Neuro-
biology (Perez-Orive et al., 2002), has been thought as an input-triggered system
that provides a delayed global inhibition to the Mushroom Bodies network. The
model, originally presented in Arena et al. (2011), is here further assessed, both
from the design and from the experimental point of view. In particular, specific
considerations that served as guidelines to derive the model, based on neurophys-
iological details, are reported. Moreover, through new experimental results, the
role of noise was assessed in a twofold aspect: the former is related to the cluster-
ing robustness, whereas the latter, more interesting, exploits the possibility to use
the positive role of noise when no input activity is registered at the ALs layer, to
give rise to a spontaneous learning activity, mimicking the phenomenon of con-
solidation during sleep, well known to take place in the fly, as well as in humans.

The paper is divided into five sections: Section II presents the biological
background of the work and the state of the art regarding artificial models of in-
sect brains. In Section III the proposed architecture is introduced and described
whereas Section IV presents some simulation results and also introduces prelim-
inary potential applications for the model. Finally, Section V draws the conclu-
sions.

2. Biological Background

The most deeply studied neural centers in the fly brain are the MBs, that, to-
gether with the LHs are widely recognized to play a fundamental role in process-
ing the spatio-temporal information coming from the glomeruli of ALs. Mutual
inhibitory connections among the ALs glomeruli have been found very recently in
neurobiological studies on the fruit fly, as discussed in Sachse & Galizia (2002).
This competitive topology allows the creation of odor-evoked patterns of excited
and inhibited glomeruli that are sent out to the higher brain structures like MBs
and LHs. MBs are a paired structure within the protocerebral hemispheres. They
play a primary role in olfactory learning: this was unambiguously proven thanks
to specific experiments with MB-defective mutant flies (de Belle & Heisenbergh,
1994). In the fly Drosophila melanogaster, each side of the MBs is constituted by
2500 Kenyon cells which run in parallel from the calyx through the peduncle and
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Figure 1: Circuit for olfactory processing. The Antennal Lobes (ALs) project olfactory infor-
mation to the Mushroom Bodies (MBs) and Lateral Horns (LHs) through the Projection Neuron
(PNs). In locusts, the LHs inhibits the MBs activity.

to the lobes. There is a prominent olfactory input from the Antennal Lobes into
the calices. Input from other sensory modalities is not obvious in Drosophila, even
if high level tasks dealing with the choice behavior in front of contradictory vi-
sual cues and involving MBs are described for flies (Tang & Guo, 2001). In other
insect species MBs are a fundamental neural center where multimodal sensory in-
tegration for learning was found: for example honeybees MBs receive prominent
visual (Gronenberg & Lopez-Riquelme, 2004), gustatory, and mechanosensory
input (Schrter & Menzel, 2003). There is also an output of the MBs to pre-motor
areas of the brain. The information flow through MBs was formerly considered
as prominently feedforward, i.e. from the Kenyon cells to the calyx and towards
the lobes. Very recently, recurrent connections between MBs and ALs have been
found. The presence of this functional feedback from the MBs to the ALs opened
the way to suggest a model including top-down modulation of olfactory informa-
tion processing in Drosophila (Hu et al., 2010). The scheme of the architecture
proposed is depicted in Fig. 1, where the different involved neural centers are out-
lined. Olfactory information flows in parallel from the ALs to the MBs and LHs.
Connections from LHs to MBs have been found, but their entity in Drosophila
is not well known. Further information comes from locusts, where LHs play an
inhibitory effect to the MBs Kenyon Cells (Perez-Orive et al., 2002). A model
which takes into account this inhibitory role was implemented in Nowotny et al.
(2003). In this model each Kenyon cell is strongly connected with the cells of its
neighborhood, and in this architecture the Antennal Lobes layer randomly projects
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to the Kenyon cells layer. A coincidence detection mechanism allows the model
to codify sequences of events in spatial patterns of firing neurons. No learning is
implemented in the model proposed in Nowotny et al. (2003), whereas the system
architecture discussed in this paper includes also learning mechanisms to allow
pattern reconstruction and expectation capabilities.

3. Insect inspired neural model

The neural model here proposed (Fig. 2) combines behavioral evidences in
insects, including flies, concerning attention capabilities, with the state of the art
on the neural structures responsible for these processes, including also a biolog-
ically relevant learning rule which boosts the system capabilities: expectation is
the emergent aspects of this new architecture. The model is directly inspired to
the olfactory system of the Drosophila melanogaster, including the new enhanced
top-down connections from MBs to the ALs, and considering the global inhibitory
role played by LHs. The overall neural structure is configured as a two layer re-
current network endowed with artificial spiking neurons. Presently the model
capabilities were analyzed referring to the clustering, attention and expectation
learning processes. Of course a natural evolution of the model proposed could
include an additional layer, of the type already implemented elsewhere by the au-
thors (Alba et al., 2010), and connected to the motor area for behavioral motion
control. As previously outlined, the developed neural structure was inspired by
the insect olfactory system. At the aim to build a computational model useful for
a number of different applications, the same structure can be used for process-
ing different sensorial artificial stimuli (e.g visual features can be easily used in
robotic scenarios). In insects the MBs are involved in a huge number of tasks and
completely different aspects of learning and memory (Chittka & Niven, 2009).
For this reason in the rest of the paper generic object features will be taken into
consideration.

3.1. The Neuron and Learning Models
The neural network is built around a cluster of spiking neurons organized in

layered lattices. Each unit is an Izhikevich spiking neuron (Izhikevich, 2003). The
model is represented by the following differential equations:

v̇ = 0.04v2 + 5v + 140− u+ I
u̇ = 0.02(−0.1v − u)

(1)
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with the spike-resetting

if v ≥ 0.03, then

{
v ← −0.055
u← u+ 6

(2)

where v is the membrane potential of the neuron, u is a recovery variable and I
is the synaptic current. Izhikevich neural models are well-known in literature and
offer many advantages from the computational point of view.

Neurons are connected through synapses. The synaptic model transforms the
spiking dynamics of the pre-synaptic neuron into a current that excites the post-
synaptic one. Here is the mathematical response of the synapses to a pre-synaptic
spike:

ε(t) =

{
Wt/τ exp (t/τ), if t > 0
0 , if t < 0

(3)

where t is the time lasted from the spike, τ is the time constant and W is the
efficiency of the synapse. This last parameter can be modulated with experience.

Hebbian learning, introduced by Donald Hebb in 1949, is a mechanism where
the synaptic efficiency increases through coincident stimulations of the postsy-
naptic and presynaptic cell.

The Spike Timing Dependent Plasticity (STDP) can reproduce Hebbian learn-
ing in biological neural networks (Song et al., 2000; Song & Abbott, 2001). The
algorithm works on the synaptic weights, modifying them according to the tem-
poral sequence of occurring spikes. The updating rule can be expressed by the
following formula:

∆W =

{
A+ exp (∆t/τ+), if ∆t < 0
−A− exp (∆t/τ−), if ∆t > 0

(4)

where ∆t is the time delay between pre and post synaptic spikes. In this way the
synapse is reinforced if the pre-synaptic spike happens before the post-synaptic
one, it is weakened in the opposite situation. Parameters τ+ and τ− represent the
slope of exponential functions, while positive constants A+ and A− represent the
maximum variation of the synaptic weight. Interesting applications in biorobotics
of this learning paradigm, together with details on the parameters are reported in
Arena & Patané (2009); Arena et al. (2009a).
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Figure 2: The Antennal Lobes model is directly connected to the sensorial system (Antennas).
We can assume that the activity of each neuron codifies the presence of a particular value for a
specific feature. Neurons in the ALs are organized in groups. Synapses from the Antennal Lobes
model to the KCs layer are randomly chosen, with a given probability of connectivity. The KCs
layer is a toroidal lattice, with local excitatory and global inhibitory synapses. The Lateral Horns
periodically inhibit the KCs neurons. Feedback plastic connections link clusters in the MBs to the
ALs neurons. Local connections within the ALs and the KCs are not reported. The delayed plastic
synapses in the KCs layer allow a temporal link between subsequent object presentations.

3.2. Antennal Lobes Model
Inspired by the ALs of the Drosophila melanogaster, we can assume to have a

layer able to codify the interesting features of objects. In the insect ALs each
glomerulus is able to detect a peculiar component of an odor: in our model
each neuron in this layer encodes a particular aspect related to a detected ob-
ject. Neurons within the ALs model are organized in groups, as illustrated in
Fig. 3. Each group codifies a kind of feature (examples of features could be color,
shape, etc.), and neurons in the same group codify different values of that feature
(i.e. different colors or shapes). Neurons in the same group are linked together
through inhibitory synapses. This topology implies that, when the ALs layer is
stimulated, after a short transient time, only one neuron in each group remains
excited, according to a Winner-takes-all topology. Neurons in different groups are
linked together through plastic synapses, reinforced when neurons are firing to-
gether, according to the Hebbian rule. This process reinforces organization among
the neurons representing the different features of a presented object, leading them
to reach a phase locked firing state. These mechanisms have several analogies
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Figure 3: Connection scheme of the ALs neural model where three different features and three
different classes within them are considered. The neurons associated to the same feature class are
mutually inhibited whereas they excite neurons of other sets through plastic excitatory connections
that are subject to learning (only the excitatory connections for neuron f11 are reported in figure).

with the Winnerless competition principle (Rabinovich et al., 2001; Arena et al.,
2009b), modelled after ALs studies. Therefore, when an object is presented to the
network, the ALs model decomposes that object in its relevant features, and the
corresponding neuron of each group remains excited. The ALs model topology
is inspired by the biological case (Masse et al., 2009), in which excitatory and
inhibitory connections allow the interaction between glomeruli in order to have
the primary odors representation. The ALs layer projects excitatory direct con-
nections to the MBs network, constituted by a number of neurons which represent
the Kenyon Cells (KC) in the fly MBs. Each neuron of the ALs is connected to
each KC model with a given probability of connection, recalling the sparseness of
connections in the corresponding areas of the fly brain.

3.3. Mushroom Bodies and Lateral Horn Models
MBs model is configured as a complex recurrent neural structure. It is made up

of a number of KCs which receive afferent input from the ALs and send feedback
synapses back to the ALs. More in details, a competitive topology was designed
for the KCs layer. Each KC is a spiking Izhikevich neuron and the whole KCs
lattice, thanks to the connections among KCs and ALs neurons, undergoes a spa-
tial temporal wave, which leads to the emergence of a cluster of neural activity.
This spatial temporal activity represents the crucial aspect of the overall network.
The KCs layer was conceived as a toroidal lattice where each neuron is connected
through fast excitatory synapses with all the neurons of its neighborhood, and
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Figure 4: The KCs layer is a toroidal lattice, with local fast excitatory and global fast inhibitory
synapses. Another set of plastic delayed synapses links each neuron of the KCs layer to the other
neurons of the same lattice, in order to have the possibility to temporally link different clusters,
allowing short term prediction and expectation capabilities of the neural architecture. In figure,
the inner circle indicates the locally excitatory neighborhood, whereas the outer circle includes all
the KCs layer network where a global inhibitory effect takes place.

through fast inhibitory synapses with all the other neurons of the lattice, as shown
in Fig. 4. The main capability of the KCs layer is a spontaneous clustering of
spiking activity, driven by a Winner takes all-like structure. In this way, informa-
tion coming from the ALs is compressed together into a cluster of neurons spiking
at a given frequency. In addition to this process, a slow and delayed diffusion of
the neural activity within the KCs layer is also included in our model. More in de-
tails, another set of plastic delayed synapses links each neuron of the KCs layer to
the other neurons of the same lattice, in order to have the possibility to temporally
link different clusters. These synapses are subject to the STDP learning algo-
rithm, that allows to discover and retain temporal causality among clusters. These
connections have the interesting capability to generate, within the KCs layer, ex-
pectation and short term prediction capabilities. Plastic feedback connections are
also present, as already outlined, from the MBs model to the ALs layer. These
connections, recently discovered in Biology (Hu et al., 2010), were never con-
sidered in any bioinspired model up to now. Their role is precious to boost the
model performance and two main functions have been identified: they are useful
to create an expectation-based depolarization of the neurons in the ALs; they are
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also essential to reconstruct the expected object. When a cluster is elicited in the
KCs layer, the synaptic connections between the neurons of the MBs cluster and
those neurons which are firing in the AL (due to the synchronous presence of the
corresponding input) are increased, according to the Hebbian paradigm.

Lateral Horns, after the neurobiological evidence of connections to the fly
MBs, and according to their mainly inhibitory role in locusts (Nowotny et al.,
2003), have been modeled as a event-driven resetting system, that generates an
inhibitory wave to the MBs, defining a processing time window for the system.
In this way, the KCs layer integrates the information coming from the ALs in a
given time window and, after the emergence of a cluster, the neural activity of the
network is inhibited by the LHs wave.

4. Network design and simulation results

In this Section the behavior of the whole network is analyzed through a series
of simulations. The obtained results are useful to understand the basic principles
that rule the network and its parameters.

4.1. Network Parameters
An important aspect of a multi-layer spiking network consists in the tuning

of parameters. The guidelines used for this proposed model are here discussed.
While the morphology of the insect brain structure is well known, the details of
the topological organization and above all the peculiarities of the network con-
nections are largely unknown. Only in some particular cases light is being shed
and the features of specific neural structures were unraveled, thanks also to the
support of behavioral Neurogenetics. Only very recently modern tools allowed
reliable neurophysiological measurements in specific brain regions. This is the
case of locust and, to a lower extent, of the fly. As a consequence, the network
considered in this work was designed drawing considerations from a number of
different cues. As regards the structure and the number of neurons in each subpart
of the network, we know from Biology that the odorant components, through the
olfactory glomeruli, stimulate 250 neurons for each AL, which project to 2500
KCs. In our model we maintained roughly the same ratio, even if the actual archi-
tecture has a much scaled topology and connectivity with respect to the biological
counterpart, and has to be considered as a proof of concept for the basic and en-
hanced capabilities ascribed to the olfactory insect neural architecture. In our case,
9 neurons in the ALs layer are connected to 81 KCs; each neuron in the ALs layer
has a probability P = 0.012 of being connected to a KC neuron. The choice of the
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sparse connections between the first and the second layer is directly drawn by the
sparse connections in the biological counterpart (Perez-Orive et al., 2002). In the
proposed simulations, the first layer is made by a 3x3 lattice. In particular, there
are three groups of neurons (f1, f2, f3), and each group is made of three neurons
(for instance, the neuron j in the group fi will be called fij), as previously shown
in Fig. 3. Neurons in the same group are connected each other through inhibitory
synapses, with a synaptic efficiency WAL = −3. Neurons in different groups
that, after the presentation of an object, fire together, increment the efficiency of
the synaptic link with a ∆WAL = 2. The initial value of such synapses is zero.
When an object is detected, the neurons of the first layer that encode the features
of that object are excited with an input current IAL = 70. The synapses between
the first and second layer have fixed efficiency of WAL,KC = 10.

Concerning the KCs layer, a 9x9 lattice with a toroidal topology has been
considered. The neurons in this layer are all connected each other according to
the paradigm of local excitation and global inhibition. A neighborhood of radius
r = 1 is defined. In this way, each neuron is connected to the neurons in its
neighborhood and with itself through excitatory synapses with an efficiency of
WKC

near = 50. It is also connected with the other neurons of the lattice through
inhibitory synapses with an efficiency of WKC

far = −30. This set of connections
gives the network its clustering capabilities. Moreover, a second set of synapses
is implemented, which allows the linking of sequences of winning clusters. Each
neuron is connected to each other neuron in the lattice through a time-delayed
synapse, subjected to learning. In this case, the most active neurons of two clusters
activated sequentially in time reinforce the synapses among them according to the
STDP rule. Feedback connections are initially set to zero. When a cluster in
the KCs layer is firing together with neurons in the AL layer, the corresponding
synapses are raised, ∆WKC,AL = 1. The time constant used for fast excitatory
and inhibitory synapses in the network is τfast = 1ms. All the equations are
solved using the Euler method with an integration time of 0.08 ms. Synapses time
constants have been chosen in order to have a plausible matching with respect to
the biological counterpart. Furthermore the learning coefficients for the network
(e.g. ∆W,A+ and A−) are chosen in order to obtain a robust association after a
few presentations of consecutive objects, similarly to the biological counterpart
(Gerber et all., 2004; Scherer et al., 2003). In order to demonstrate the robustness
of the structure and to mimic realistic situations, noise has been introduced during
the simulations. In particular, each parameter has been altered adding a gaussian
noise with zero mean and variance equal to the 10% of the mean value of the same
parameter.
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Figure 5: Evolution of the membrane potential of the neurons in the first layer, during the pre-
sentation of the first object. In this case, no competition is present between neurons, due to the
absence of the contribution coming from the expectation feedback. However, it can be noticed
the inhibitory effect of the excited neurons on the others. Input neurons project information to the
KCs layer.

4.2. Analysis of the clustering properties
To test the clustering properties of the neural model an object with three differ-

ent features is presented to the first layer of the network; three neurons are excited,
one for each group of input neurons (Fig. 5). The ALs projects the information to
the second layer (KCs layer), exciting its neurons. After a transient of 1200 simu-
lation steps, the network is able to elicit a winning cluster. Fig. 6 depicts the trend
of the mean potential of the KCs neurons in given time windows, clearly showing
the clustering arousal. The emerged cluster tends to remain stable during time.
It is important to notice that some of the main properties of the KCs layer model
remain constant with respect to the variation of the dimensions of the lattice. For
example, in Fig. 7, a simulation of a 20x20 lattice is presented. The behavior
of the network is similar to the 9x9 one. The main difference stands in the time
needed to elicit a winning neuron. A larger lattice needs more time to converge,
since more connections are involved. However, the mean frequency of the oscil-
lations in the membrane potential of the winning neuron remains within the same
range. That is in line with the neurophysiological measurements performed in the
locust ALs (Nawrot et al., 2011). So we designed the neuron parameters, the input
current amplitudes and the time constants taking into consideration these guide-
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Figure 6: Evolution of the mean potential of the neurons in the 9x9 KCs layer. The network has
been simulated for 1200 steps with an integration time of 0.08ms. The membrane potential is
averaged every 300 simulation steps. At the end of the simulation, only one cluster of neurons
remains active.

lines from Biology. Also the mean membrane potential of the neurons remains
unaffected from the network scaling. It is to be noticed that the transient time is
also related to the connectivity level between the ALs and the KCs layer. The
increase of wiring probability leads to a longer transient to reach a steady state
condition in the KCs layer. In any case the clustering capabilities are preserved.
It could be also noticed that the clustering capability of the network depends on
the ratio between the efficiency of the local excitatory synapses and the inhibitory
ones. In particular, maintaining the chosen ratio to about 5 : 3, the clustering capa-
bilities are preserved. However, high values of efficiency increase the robustness
to noise. For example, with the parameters WKC

far = −3 and WKC
near = 5 the net-

work maintains its functionality with zero noise but its clustering performance are
not robust if a noise of 10% is introduced during the simulations. For this reason
we prefer to use larger weights, as already introduced, obtaining a more robust
and stable clustering capability during the pattern formation process in the KCs
layer. In the following the main capabilities of the proposed network are outlined
through a series of key simulations.

4.3. Attention through top-down modulation
The network structure can be trained to show attentive capabilities, which con-

sist in filtering out, from a previously presented and learned object, all the other
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Figure 7: Evolution of the mean potential of the neurons in the 20x20 KCs layer. The network
has been simulated for 8000 steps with an integration time of 0.08ms. The membrane potential is
averaged every 2000 simulation steps. At the end of the simulation, only one cluster of neurons
remains active.

stimuli, being them other objects or noise, that could be presented concurrently
with the reference object. Such attention capability, recently discovered in the
fly (van Swinderen, 2007), is a simple emerging property of our structure which
derives from the presence of recurrent top-down connections. In fact, if a given
object is repetitively presented to the network input, a particular cluster emerges,
and concurrently, the feedback connections to the ALs neurons corresponding to
the presented object are reinforced. If the presented object is disturbed by the
presence of additional distracting inputs (being these noise or other objects), the
feedback connections bias the ALs neurons associated to the current cluster, to
be much more excited than those ones elicited by the distracter inputs. As a
result, internal ALs connections, with the addition of the feedback ones, coop-
erate in such a way as to efficiently filter out the exogenous signals, enhancing
the attentional process. If the top-down connections were absent, the WTA pro-
cessing in the ALs layer would not be able, by itself, to filter out distracters and
a new cluster would emerge, showing a clear example of distraction process, as
found in cAMP-cascade learning mutant flies, which show attention deficits (van
Swinderen, 2007). If such an attentional process is extended to subsequently stim-
ulated clusters, expectation-based processes emerge, as described and experimen-
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tally shown in the following.

4.4. Expectation through top-down modulation
The expectation capabilities of the MBs structure can be modeled exploiting

the synaptic modulation of the feedback connections between the Kenyon Cells
and the Antennal Lobes when objects are presented in sequence. To better explain
this process a simulation is here reported, where two subsequent objects are pre-
sented to the network. In particular, the first object is characterized by features
that stimulate f11,f21,f31 ALs neurons whereas the second object is identified by
other features (f11,f23,f32). During the presentation, the KCs layer elicits two
consecutive clusters and links them through the delayed synapses. Moreover, the
connections between the two clusters and the corresponding input neurons at the
ALs layer are learned. Several scenarios are presented in the following, to outline
various interesting features of the proposed architecture.

1. A first simulation consists in the presentation of a first object, followed by
another object with an incomplete feature set presented at the second step.
In particular, information about the feature related to the second group of
neurons in ALs (f2j) is missing. In this case, thanks to the previous learning
cycles, the KCs layer is able to reconstruct the lacking feature: feedback
connections from the MBs excite the ALs neurons that codify that object
and synaptic connections among neurons in different ALs groups allow the
reconstruction of the complete object. No competition does take place in
the ALs layer, but top-down connections allow the recalling of the lost in-
formation. An example of this reconstruction mechanism is shown in Fig. 8.
The expectation capability herewith presented can be further exploited for
modelling a simple sequence learning paradigm. In fact, if during the learn-
ing phase a short number (say three) of objects is presented, three winning
clusters are subsequently elicited and the central neuron for each cluster
reinforces its connection to the central neuron for the winning cluster asso-
ciated to the subsequent object. So, during the testing phase the presentation
of the first object is able to elicit the sequence of winning clusters in the KCs
layer, which reconstruct at the AL layer, the sequence of corresponding ob-
jects. The sequence of formed clusters following this procedure is depicted
in Fig. 9. At the end of each phase, the network is reset by the LHs.

2. In a second test, after the presentation of the first object, the second object
is presented again. In this case, the feedback system acts as an expectation-
based filter that enhances the response of the whole architecture. The cluster
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elicited by the first object stimulates, through the delayed connections, the
second cluster and then the ALs neurons speeding up the response to the
second object.

3. Finally the behavior of the network in case of unexpected situation is eval-
uated. After the presentation of the first object, a second object is pre-
sented to the network, but it is different from the second object presented in
the learning phase. In this case, a competition takes place. The top-down
connections enhance the response of the neuron representing the common
features between the object just presented (and unexpected) during the test
phase and the second object shown in the learning phase. At the end of the
competition, a new cluster is elicited in the KCs layer, as shown in Fig. 10.
This cluster represents the new object, creating a new sequence. The net-
work is then able to store multiple short competing sequences and the most
reinforced one will be finally stored. It has to be considered that the struc-
ture is not conceived to act as a sequence generator, but it contains the same
ingredients and, suitably modified and scaled up, could be the starting point
for an efficient bio-inspired sequence generator. From the biological point
of view we have clear evidence for sequence learning in bees, but until now
the neural circuits giving rise to such capability are unknown.

4.5. Consolidation during Sleep
An interesting property of the network can emerge, exploiting the presence of

noise in the system. In fact the contribution of noise in can be useful to consolidate
the acquired knowledge during a resting phase, in which no sensorial inputs are
given to the network. A simulation divided in two phases is prepared; the first one
is a learning phase, in which the network creates the association between clusters
and objects. In particular, four sequences of two objects have been presented
to the network. At the end of the training phase no physical input is presented
at the ALs layer, but it is assumed that the KCs layer is subject to noise which
was supposed as gaussian with zero mean and variance σnoise = 10. This noisy
disturbance will onset a dynamical transient in the KCs neurons until a cluster
will emerge over the others, as shown in Fig. 11. If this cluster had formerly been
trained to represent a given object, this will be recalled at the ALs layer, like an
“imagined object”. A new learning cycle will then arise, in which not only this
object will be consolidated, but also all the other objects eventually expected after
this one in an already learned sequence (see Fig. 12). New imagined solutions
could also be experienced during this “sleeping phase” and, in more complex
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networks including also more environmental details, the system could discover
new strategies to efficiently solve difficult situations starting from what already
learned during the “awake phase”.

5. Conclusions

Inspired by specific parts of the insects brain, we proposed a neural model for
expectation-based learning. The neural architecture is a multi layer structure in
which the first layer consists of sensory neurons inspired by the insect Antennal
Lobes. The neurons of this layer are able to detect the presence of character-
istic features in objects. The information coming from the sensorial system is
then projected to the second layer, that is a self-organizing layer inspired by the
insects Mushroom Bodies. The competitive topology of this network is focal-
ized to the emergence of clusters, and it is periodically reset, simulating the LHs
effect found in locusts. The basic principle of the architecture is that the expecta-
tion for objects can be translated into a sequence of winning clusters in the KCs
layer, that projects back to the ALs. Simulation results show the suitability of
the proposed network as a bio-inspired architecture, in which drawing inspiration
by simple beings, emergent capabilities, like attention, expectation and simple se-
quence recalling tasks can be found. The network capabilities can be exploited
in robotic applications like landmark recognition, behavioral choices in front of
expected situations versus unexpected ones, and sequence learning for maze solv-
ing. Regarding the network topology, the random probability-based connections
between the first and the second layer improves the clustering capabilities of the
network. This enables the birth of new clusters in presence of slightly different
objects, decreasing, on the other side, the memory capacity of the network that
can be improved by scaling-up the network dimensions, reaching configurations
similar to the biological case. Moreover, a really added value provided by this
simple network is the possibility to reconstruct an expected object. In fact the top-
down information stimulates the AL neurons that are considered as representative
of the single features that constitute the expected object. The expected object is
then projected down at the sensing layer filtering out the other objects eventu-
ally present in the scene. So, in case of multiple presented objects, the network
will “pay attention” only to the expected one. Finally, the network could learn
even without a real input presented: if a suitable level of noise is added in the
network in absence of input, for example simulating the overnight autonomous
behavior, the noise will excite the KCs layer, which will give rise to sequences of
network iterations. This phenomenon could suitably model the overnight memory
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consolidation effect, well known in insects. Of course the simulation results here
presented have to further be refined, together with the model itself in a more and
more strict accordance with the biological case.
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Alba L., Arena P., De Fiore S., Patané L., Strauss R. & Vagliasindi G. (2010). Im-
plementation of a Drosophila-inspired orientation model on the Eye-Ris plat-
form, 1–6. Proceedings of 12th Int. Conf. on Cellular Non linear Networks and
their Applications.
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nerLess Competition paradigm in Cellular Nonlinear Networks: Models and
Applications, Int. J. Circ. Theor. Appl., 37, 505–528.
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Figure 8: The network is able to reconstruct the missing feature using expectation mechanisms.
When the first object is presented the ALs layer is stimulated (a) and a cluster emerges in the KCs
layer. The mean of the KCs membrane potential at the beginning (b) and the end of the simulation
(c) (for a total of 1500 simulation steps) is reported. During this process the plastic synapses in
the ALs change according to the Hebbian rule as well as the feedback connections from KCs to
ALs. When a second object is presented again, the ALs process the new features information (d)
and the KCs layer converges to a new cluster (e)-(f). During this process the delayed connections
in the KCs layer are modulated accordingly and the two consecutive clusters (c) and (f) will be
linked together. Finally, after the learning phase, if the first object is presented, it is possible to
reconstruct the missing feature (f22) of the second object using the acquired knowledge (g) and
the correct cluster emerges (h)-(i).
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Figure 9: During the learning phase, three objects are presented to the network. In the test phase
each cluster representing a given object excites the cluster that represents the following object in
the sequence. Objects can be reconstructed thanks to the feedback connections from the KCs layer
to the ALs.
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Figure 10: Behavior of the network in the case of non satisfied expectation. During the learning
phase, after the presentation of two consecutive objects, the KCs layer elicits two clusters and
links them through the delayed synapses. During the test phase, after the presentation of the first
object, an object that does not follow the previous stored sequence is presented. In this case, at the
second step the network tries to recall the second object, but the competitive topology in the first
layer corrects the prediction and a different cluster is formed in the KCs layer.
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Figure 11: After the learning phase, noise can excite the KCs layer leading to the emergence of a
cluster. It can be noticed the competition in the ALs layer during the transient in the KCs layer.
The relative object features (f11, f22, f32) are reconstructed in the ALs layer through the feedback
connections.
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Figure 12: During the second step of the consolidation experiment the network autonomously
recalls the second object. The connection between the two clusters is strengthened and the second
cluster, in turn, stimulates the ALs layer, eliciting the corresponding object (f13, f22 and f33).
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