Decision making processes in the fruit fly:
a computational model
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Abstract. Visual learning is an important aspect of fly life. Flies are able to ex-
tract visual cues from objects, like colors, vertical and horizontal distributedness,
and others, that can be used for learning to associate a meaning to specific features
(i.e. a reward or a punishment). Interesting biological experiments show trained
stationary flying flies avoiding flying towards specific visual objects, appearing on
the surrounding environment. A decision making process has been identified in the
flies that had been trained to avoid objects with specific visual features. In presence
of a feature the fly has to decide which features are the most relevant to make a
choice. The decision making strategy is guided by a pre-wired hierarchical catego-
rization of the features that, for instance, leads the fly to give more importance to
color with respect to shape. A bio-inspired architecture has been proposed to model
the fly behavior and experiments on roving robots were performed. Statistical com-
parisons have been considered and mutant-like effect on the model has been also
investigated.
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1. Introduction

Visual learning is an important aspect of fly life. Flies are able to extract visual cues from
objects and associate a meaning to them depending on other proprioceptive and extero-
ceptive stimuli. The relevant brain center responsible for the long term aspect of visual
memory has been identified in the Central Complex [1].

Another interesting aspect of the insect brain is related to decision making processes
that, is related to the visual sensory modality, were found to depend on another relevant
brain neuropile, called the Mushroom Bodies. The number of experiments related to this
process are limited due to the complexity of the set-up that needs to exclude a multitude
of possible concurrent variables to perform a correct analysis of the results. However an
interesting experiment was performed by Tang and Guo (2001) [2]: they trained station-
ary flying flies, using a heat beam, to avoid a visual pattern in a choice situation where
two times two pairs of objects are presented. One pair of objects was green and had an
upright-T shape and the other pair was blue and had an inverted T-shape. In the test sit-
uation the colors were switched between objects. This feature mixture creates a conflict-
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ing situation for the flies. Is the predictor of heat the form or the color of the previously
punished object? Wild-type flies took their decisions to avoid the previously punished
objects based on the color of the objects, showing a strong preference in following the
color information. An interesting behavior arises when the level of color saturation de-
creases during the experiments. The dilemma is therefore created not only switching the
colors between the landmarks, but also fading the level of saturation. Below a certain
threshold for color saturation wild-type flies suddenly and consistently select the shape
instead of the color of the objects to be avoided. There was always a clear decision in all
flies of the population. Mushroom Bodies-less flies had no clear decision point at which
they would switch from color to shape. Rather their population average started with short
preference for the color at full saturation and then gradually shift towards shape as the
color fades. Therefore Mushroom Bodies (MBs) can be considered as a relevant center
for visual-based decision making processes. A bio-inspired architecture has been pro-
posed to model the fly behavior and experiments on a dynamic simulation environment
were performed.

2. Model Description

In insects and in particular in flies, MBs are a key neural assembly for decision mak-
ing. Visual information are mainly processed through the Central Complex (CX) [1], [3],
[4] but interesting experiments on the fly show that even if no direct connections have
been till now discovered between CX and MBs, the latter is responsible for decision
making processes also in relation to visual inputs. The role of MBs for generalization
with foreground/background separation and in presence of contradictory cues has been
demonstrated in different experiments. In particular, modeling the Fan-shaped body, an
important element of the CX, it is possible to replicate on a robotic platform the visual
conditioning biological experiments carried out on the fly [5]. The proposed model for
solving decision making problem in visual-related experiments in flies is shown in Fig-
ure 1. The visual information, acquired through the fly’s compound eyes, is elaborated
in the CX to be used for the final behavior selection. Beside this direct path a secondary
one through the Mushroom Bodies is estabilished. Only a limited number of relevant
information are acquired from the visual preprocessing layer to be used to modulate the
CX response. The MBs is assumed to work as a gateway that modulates the response of
the CX. This mechanism is not important for such tasks as like visual learning, but nev-
ertheless is fundamental in presence of contradictory visual cues to solve a dilemma. The
part of the MBs block devoted to this process, that we called MB3, is important to solve
contradictory situations, as will be shown, but it is not essential for other more common
visual functions, like visual orientation, targeting and learning. As depicted in Figure 1,
the direct path through the CX and the indirect path through the MB go to the Behavior
Selection Network (BSN) that does not yet correspond to any real physical structure of
the brain: it is a block where all the distributed functionalities related to the final behavior
choice have been glued. The current implementation of the BSN consists of a two layer
spiking network implementing a Winner Takes All - like behavior. The role of MBs in
handling visual information, to the best of actual Neurobiological knowledge on the fly
brain, is up to now limited to two specific circumstances: in presence of contradictory
cues and for foreground/background separation allowing a generalization process. The



External noise Reward/Punishment

l Visual features
(What, Where)

Visual
Inputs Visual
Pre-Processing

Behavior
Selection

Visual features
(What)

Control
gains

Conflicting Cues
Decisions

Figure 1. Block diagram of the elements of the insect brain involved in the decision making process in pres-
ence of contradictory cues in the processed visual field.

model proposed to deal with the decision making process in presence of contradictory
cues is reported in the following and the structure has been modeled on the basis of the
fruit fly experimental results reported in [2]. The whole network is depicted in Figure 2
It basically consists of three modules: the BSN block, already introduced, the CX block,
used for visual learning via classical STDP-based conditioning and the MB3 block. The
fruit fly is normally attracted from landmarks acquired through visual cues. Here we used
the color and the shape as the most relevant visual information. Since attraction is the
default behavior, in Figure 2 an approach bias current is used to implement the approach
behavior as the default one. Of course, a rewarding signal can contribute to enhance the
approaching behavior through STDP. On the contrary, if an object is punishing through
a particular feature (e.g. color and/or shape), a shock signal is released to the network
through a proper neural input. This elicits, via fixed synapses, an escape response and
also a conditioned learning in the color and/or shape subnetwork of the CX takes place.
This dynamics is biased by the MB3 via axo-axonal connections which modulate the ax-
ons to the escaping neurons according to the color saturation value. After the experimen-
tal results on the fly, we hypothesize that explicit information about the color saturation
level is resident into the MB cells which receive this information from the optical lobes,
together with a few other information. Moreover we suppose that the color saturation
information is transmitted via non spiking neurons. Axo-axonal connections are well
known to modulate (i.e. facilitate or depress) post synaptic cells, and were recently found
in the fly MBs. The MB3 function is here modeled using two neurons with a sigmoid-
like activation function of the color saturation level. Their axons directly affect the ax-
ons to the escaping neuron via fixed weights (see Figure 2). The so-called MB3 network
works as a gateway that modulates the information from the FB to the BSN depending on
specific input signals. The key information processed at this level is the color saturation
that allows to sharply decide the most convenient behavior to be performed. The visual
preprocessing block is able to extract the relevant features from the segmented objects
present in the scene and the FB associates a meaning to the visual data depending on the
rewarding or punishing signals coming from the environment via classical conditioning.
Finally the acquired information compete at the behavior selection block in choosing
the final robot behavior. The experiments were performed both in simulation and on real
robots using a SW/HW framework that allows to perform dynamic simulation on a 3D
environment [6].
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Figure 2. Interaction between the FB, MB3 and BSN blocks, the presence of MB3 is important for the final
behavior selection as part of the decision making process.

3. Simulation Results

To evaluate the performance of the proposed control system, a virtual arena similar to
that one used for the biological experiments has been considered. The rectangular arena
contains two pairs of landmarks placed on the opposite walls. The simulated robot, de-
pending on the received punishment signals, modifies its behavior as shown in Figure 3
where the robot activity is summarized in windows of 5 minutes for a total of 15 min-
utes of simulations. The robot trajectories, together with the gaze direction for each time
window are reported. The robot, during an initial exploration phase, learns to avoid the
red squares that are associated to a punishment.

The time evolution of the gaze direction distribution is shown in Figure 4 where it is
evident that in a few minutes the simulated robot learns to avoid the red square. A very
similar behavior is reached also when the information about the object shape is missing
(e.g. all the objects have the same rectangular shape) as shown in Figure 5 where the
gaze direction in time is similar to the previous case.

Another interesting case is obtained when the shape is the only distinct feature be-
tween the landmarks, for instance introducing in the arena red circles and squares. Only
the square objects produce a punishment to the robot. The gaze direction is reported in
Figure 6 and the behavior is similar to the other illustrated cases.

Eventually the role of the MB3 block, that works as a gateway modulating the infor-
mation generated by the FB, is evident in the case of a dilemma. The robot after learning
in the arena shown in Figure 3, is facing a new scene where the visual features associated
to the objects are contradictory if compared with the first arena, in fact a yellow square
(placed in the top and bottom side of the arena) and a red circle (placed left and right
in the arena) are now present: the color was switched with the shape. In Figure 7 the
behavior of the robot is shown through the gaze direction obtained in three different sim-
ulations that differ for the value of the color saturation. When the color saturation (CS)
is high (C'S = 1) the robot has a preference to choose the color as the most meaningful
feature and avoids red objects. Decreasing the saturation (C'S = 0.8) the robot has no
clear preference and tries to escape from the objects, finally for low level of color satura-
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Figure 3. The behavior of the robot in terms of followed trajectories and gaze distribution, is acquired in
windows of 5 minutes. The red squared landmarks in the bottom and upper part of the arena are dangerous and
the robot learns to avoid objects with these features.
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Figure 4. Evolution of the gaze distribution in time. After a few punishment events, the robot avoids to direct
its attention to the red squared object.
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Figure 5. Evolution of the gaze distribution in time when the objects have the same shape but different colors.

tion (C'S = 0.5) a preference for the shape arises. Going deeper in details analyzing the
critical case of C'S' = 0.8, it is possible to evaluate the temporal evolution of the robot
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Figure 7. Dilemma test in presence of the MB block. After a learning phase performed in the arena in Figure
3, a testing is performed changing the color feature between the two objects. When the color saturation is high,
the robot has a remarked preference for the color, reducing the color saturation (CS=0.8) no preference appears
whereas further reducing the color saturation (CS=0.5) a preference for the shape appears.
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Figure 8. Dilemma test in presence of the MB block. When the color saturation is about CS=0.8, the robot
shows no preference but due to a forgetting factor a preference for the shape appears in time and persists if the
punishment signal is removed

behavior as shown in Figure 8. During the first 5-10 minutes the robot has no preference
for the objects while during time the robot starts to approach objects with square shapes
and later on also red objects if the punishment signal is no longer present in the envi-
ronment. A very interesting result obtained in [2] consists in replicating the Dilemma
experiment in a mutant fly with defects in the MB block. We modeled this case deacti-
vating the block MB3. The results obtained while changing the level of color saturation
are given in Figure 9, it is interesting to analyze that while for low level of saturation
the behavior is very similar, when the color saturation is high the robot is not able to de-
cide which feature is dangerous with respect to the other and tries to avoid both without
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Figure 9. Dilemma test after ablating the MB block. The presence of an high color saturation is not enough to
force the robot to make a choice.
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Figure 10. Representation of the robot behavior through the preference index in presence of a dilemma in the
proposed simulations. See [2] for biological details and comparisons. Significative differences are visible when
the MB block is eliminated from the control loop.

solving the dilemma. To summarize the results and compare the behavior of wild type
and MB-defective robots, a preference index has been considered. The index is similar
to that one used in the biological experiments in [2], and is calculated considering the
time spent observing each object compared with the entire simulation time:

pI— tys —tro )

Ltot

where ty g is the time spent observing the yellow squared object ¢ g is the time spent
observing the red circular object and ¢, is the duration of the experiment. Figure 10
shows the trend of the Preference index for both the simulation. The index is obtained
performing a set of 10 simulations of 5 minutes for the different levels of color saturation.
The results show that the robot controlled with an insect-like brain structure is able to
make a clear decision among the two objects depending either on the color (for C'S >
0.8) or on the shape (C'S < 0.8) while the mutant robot, where the effect of the MB
block on the decision process is missing, is not able to decide in case of high level of
color saturation. Finally also in the mutant experiment when the degradation of the color
is high enough, the preference for the shape takes the lead.



4. Conclusion

Flies are able to extract visual cues from objects, like colors, vertical and horizontal dis-
tributedness, and others, that can be used for learning to associate a meaning to specific
features. In presence of a conflict the fly has to decide which features are the most rele-
vant to make a choice. A bio-inspired model of the Drosophila brain centers involved in
this task has been proposed to model the fly behavior and experiments on roving robots
were performed. It is composed of three main blocks which interact so as to show an
emergent behavior able to solve visual contradictory cues. Results have been compared
to biological data. A huge current effort is being paid in order to tray to include into
the whole network also other relevant features related to MB functions,like the behavior
evaluation and the olfactory learning.
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