
Incremental learning for visual classification using Neural Gas

Ignazio Aleo, Paolo Arena and Luca Patané.

Abstract— In this paper we investigate a novel algorithm for
solving classification problems in an action-oriented perception
framework supported by visual feedback. The approach is
based on an extension of the Neural Gas with local Principal
Component Analysis (NGPCA) algorithm. As an abstract Re-
current Neural Network (RNN) this model is able to complete
a partially given pattern. Under this point of view it is possible
to generalize the model as a supervised classifier in which for a
given segmented object (i.e. with particular visual cues) the class
variable is retrieved as the network outputs. An incremental
version of the algorithm is also presented and applied in a
robotic platform for object manipulation tasks.

I. INTRODUCTION

In robotic applications data classification is extremely
important and, as far as the visual input is considered, the
number of features and the complexity in class discrimination
increase enormously. For these reasons it is important to
identify algorithms for classification that show characteristics
like robustness, low computational needs and flexibility, in
order to be adopted in different situations and others.

The Neural Gas (NG) [1] is a vector quantization technique
that tries to approximate a given manifold with a reduced
number of points.

With the local Principal Components it is possible to rep-
resent sensor distributions locally constrained to subspaces
with fewer dimensions than the space of the training data.
For this reason, as described in [2], Principal Component
Analysis (PCA) is able to model distributions in which
directions with almost zero variance exist. This reveals to
be a key point in a visual classification task in which the
number of dimensions in the feature space is easily very
high.

With the introduction of PCA in the Neural Gas algorithm
(NGPCA), each of the data-representative points (hereafter
indifferently referred to as code-book vectors or particles) is
extended into hyper-ellipsoids to better match the given data
distribution [3]. This technique has been applied in different
fields as redundant inverse and forward kinematic (IK and
FK) for serial manipulator and roving robot path planning
[4]. Though in this first implementation the algorithm ex-
ploits a supervised learning mechanism, our final aim is to
further develop a fully unsupervised classifier for real robotic
applications. Under this point of view our algorithm has been
compared, from the beginning, with a Self-Organizing Map
(SOM) [5] which is at the same time flexible and simple.

As a key point for a real time application, the data
set is incrementally acquired during the experiment and
not completely available at the beginning as it happens in

Ignazio Aleo, Paolo Arena, and Luca Patané are with the Dipartimento
di Ingegneria Elettrica, Elettronica e dei Sistemi (DIEES), Universitá degli
Studi di Catania, Italy (email: {ialeo,parena,lpatane}@diees.unict.it)

traditional structures. Under this point of view, it is important
to envisage a growing mechanism that allows the algorithm
to cope with sample collection typical of a moving robot in
an unknown environment (i.e. dynamically changing training
set).

The model architecture can be easily divided in a learning
phase, in which the data distribution is approximated and in
a recall phase in which an uncomplete pattern is presented
to the network in order to retrieve the output (complete
pattern). As already discussed in [6] [7], similarly to other
classes of Recurrent Neural Networks (RNNs), this model is
able to cope with multiple solution tasks providing one of
the possible solutions and it is also possible to choose the
role of input and output neurons, after the training, simply
modifying the recall phase.

In the next sections an extension to a supervised classifi-
cation of the NGPCA algorithm, with visual cues variables
used as part of the input pattern, is discussed. Moreover an
incremental on-line version of the architecture gives an added
value action-oriented classification capability for object ma-
nipulation on a roving robot applications in dynamically
changing environment [8].

II. MODEL DESCRIPTION

The Neural Gas algorithm is a variant of the soft-clustering
vector quantization with the addition of annealing. For a
given pattern space P ⊆ <d, the algorithm starts choosing
m points cj (with j = 1, 2, ...,m), in this hyperspace, from
the N training set elements.

During each step, a random pattern x is chosen from the
training set. Then each j-point position cj is updated for
the next iteration step relating to its rank rj function of the
distance from the selected pattern through the learning rate
ε and the neighborhood range % as follows:

cj(t+ 1) = cj(t) + αj · [x− cj(t)], (1)

where αj is defined by αj = ε · e−rj/%.
In order to force algorithm convergence through iterations,

both ε and % exponentially decrease from εinit (%init) to εf
(%f) as in the following:

ε(t) = εinit(
εf
εinit

)
t
T with εinit ≥ εf , (2)

%(t) = %init(
%f
%init

)
t
T with %init ≥ %f ,

where t is the current iteration time and T is the last iteration
time.

The local PCA extension of the NG considers hyper-
ellipsoid units, with q principal components, instead of
simple points and therefore the ranking of the units cannot

Fig. 1. Algorithm block diagram for the learning phase of the Neural Gas
with local Principal Component Analysis (NGPCA). The NG block performs
center updating for a given training vector, extracted by the Training Selector
(TS), the PCA block executes one step of local principal components
algorithm and GSo (Graham-Schmidt ortho-gonalization) is able to give
eigenvectors orthogonality property.

depend on an Euclidean distance. One of the possible dis-
tance measure is the normalized Mahalanobis distance [4]
[9], an elliptical distance that can be computed, for each j
particle, as:

E(x) = ξTWΛ−1WT ξ + 1
σ2 (ξT ξ − ξTWWT ξ)+

+ ln(detΛ) + (d− q)lnσ2,
(3)

where ξ = x−c is the deviation of vector x from the center
unit, W is the eigenvector matrix, Λ is a diagonal matrix
containing the eigenvalues. The second term of equation (3)
is the reconstruction error divided by σ2 that depends on the
total residual variance vres, among all d−q minor dimensions
(d ≥ q), as in

σ2 =
vres
d− q

. (4)

The total residual variance is updated according to:

vres(t+ 1) = vres(t)+

+ α · (ξTWΛ−1WT ξ − ξTWWT ξ − vres(t)).
(5)

To modify principal components of existing ellipsoids,
one step of the Robust Recursive Least Square Algorithm
(RRLSA), described in [10] [11] is performed.

{W (t+ 1),Λ(t+ 1)} =
PCA{W (t),Λ(t), ξ(t), α(t)}

(6)

Since the orthogonality of W is not preserved after each
step, the Gram-Schmidt orthogonalization method has been
introduced [4]. The algorithm overall block diagram is shown
in Fig. 1 where the already introduced main blocks are: an
initialization block (init) that initializes all learning parame-
ters and variables; a Neural Gas block (NG) that updates the
position of the centers of the ellipsoids for a given pattern x
chosen by the Training Selector (TS) from the training set
T = T1, T2, ..., TN as in equation (1); a Principal Component
Analysis block (PCA) that updates hyper-ellipsoids axes with
RRLSA as in equation (6) and a orthogonalization block
(GSo) that performs the so called Gram-Schmidt algorithm.
Relevant parameters and variables used in the model are
summarized in Table I. In order to reduce the dependence of
the error in equation (3) from the volume of the considered
ellipsoid and to avoid useless particles (with weight α almost
zero) in the pattern space, it is possible, as in [4], to modify
the distance measure as follows:

Ẽ(x) = (ξTWΛ−1WT ξ+

+ 1
σ2 (ξT ξ − ξTWWT ξ))V 2/d,

(7)

TABLE I
SUMMARY TABLE

m number of particles
N number of training patterns
d pattern space dimension
q number of principal components
cj center of particle j
rj ranking of particle j

vres total residual variance
Λj eigenvalues matrix of particle j
Wj eigenvectors matrix of particle j

where V is the volume of the considered ellipsoid unit and
can be computed according to

V = σd−q
√
detΛ. (8)

A. Testing phase

After the learning phase, the data distribution is repre-
sented by m hyper-ellipsoids with center cj (with j =
1, 2, ...,m), semi-axes lengths

√
λkj (with k = 1, 2, ..., q),

wj
k principal component eigenvectors and a residual vari-

ance σ2
j .

In the recall phase an incomplete pattern p∗ ⊆ <d−s, with
an s number of laking dimensions (s ≤ d), is given as input
and the algorithm would rebuild the s free dimensions and
give the optimum complete pattern ẑj∗ as output.

In order to perform the recall, the input to the network is
given in form of an offset p (i.e. fulfilment of p∗ in Rd with
zeros among lacking dimensions) in the constrained space
z(η) ⊆ <d as follows:

z(η) = Mη + p, (9)

where M matrix aligns the constrained space to a particular
parameter space while η ∈ <s is a vector of free parameters.

For instance, if d = 6 and s = 3 and the three free
variables are in the last part of the training patterns (i.e. p
of the form p = [p1, p2, p3, 0, 0, 0]) the M matrix has the
following form:

M =

[
0
I

]
, 0 =

0 0 0
0 0 0
0 0 0

 , I =

1 0 0
0 1 0
0 0 1

 . (10)

A potential function in the constrained subspace Ej(z) can
be computed for each ellipsoid as:

Ej(z) = yTj Λ−1
j yj + 1

σ2
j

(ξTj ξj − yTj yj)+

+ ln(detΛj) + (d− q)lnσ2
j ,

(11)

where ξj is the displacement from the center ξj = z − cj
and yj = WT

j ξj is the representation in the local coordinate
system of the ellipsoid.

For each unit j, the point of constrained space with smallest
potential ẑj is determined, according to equation (11), and
then the unit j∗ that has the minimal potential among all
Ej(ẑj) is chosen as complete pattern.

As shown in [4], the function E(η) is convex and it
is possible to determine analytically the only minimum η̂j
computing:

η̂j = Aj(p− cj), (12)

with

Aj = −(MTDjM)−1MTDj ,

Dj = WjΛ−1
j WT

j + 1
σ2

j

(I−WjWT
j). (13)

III. CLASSIFICATION PROBLEM

A simple supervised classification problem is one of the
straightforward applications of this kind of approach.

The proposed strategy is oriented to object classifica-
tion through visual features acquired by a moving robot
(e.g. robotic arms or rovers with manipulation capabilities)
equipped with a camera. The training pattern is divided in a
feature hyper-space f and a class identification parameter n.

x = [f , n]. (14)

During the training phase the complete pattern is presented as
input to the algorithm. In the testing phase the class number
portion of the vector is left free and is retrieved as output.

A. Patterns

Simple visual cues have been chosen to build the feature
part f of the input training pattern. Both a space-color
representation and geometrical features extraction have been
performed in a segmented image. The most present hue,
saturation and value (respectively cH , cS and cV) and some
geometrical features p, A, em and eM (respectively the
perimeter, the area, the shorter and the longer edge of
the minimum rectangle that contains the object) have been
extracted from a preprocessed image obtained with the Canny
segmentation algorithm [12] [13].

The feature part of the input pattern is here described:

f = [cH , cS , cV , p, A, em, eM]. (15)

As often happens in real-time robotics, in our application, the
training data-set is not fully available at the beginning of the
learning: we suppose the robot to collect training images (i.e.
complete training patterns) during its mission (i.e. iteration
after iteration) and at the same time try to correctly classify
them to increase its performance in a foraging task-oriented
scenario.

B. Incremental Learning

In order to achieve incremental learning, several problems
need to be overcome. To this end some key modifications to
the presented classification algorithm were added.

First of all, the number of particles vectors should be vari-
able. Then the annealing of each ellipsoid (i.e. the capability
to move) must be function of its own age (i.e. number of
steps present in the training).

The on-line supervised nature of the algorithm needs both
recall and training phase to be achieved in each iteration as
explained below.

Fig. 2. Algorithm block diagram for on-line incremental learning that uses
pre-processed input vectors. The Segmentation and Feature Extraction block
(SFE) performs a frame segmentation and extracts the feature vector f . The
Incremental Block (IB) regulates the increase of the number of gas particles
used in the classification.

A block diagram of the modified algorithm is shown in
Fig. 2. When a new input is presented (i.e. a vector of features
f with a class n from the Segmentation and Feature Extrac-
tion (SFE), pre-processing block) the Incremental Block (IB)
performs a testing phase and then checks the distances Ẽ(x)
for all the ellipsoids already instantiated. Therefore, when a
pattern is chosen for learning purposes, a test on the error is
performed:

min(Ẽ(x)) ≤ Eth, (16)

where Eth is a distance threshold used as a trade-off between
accuracy and computational complexity. If inequality (16) is
not satisfied a new instance in the code-book is produced.
Moreover, the new ellipsoid is initialized and its Mahalanobis
distance from the current pattern is set to zero.

The time variable is then no more a global iteration counter
but becomes a variable associated to each particle. Therefore,
the ellipsoid j at time t would have age aj(t) and its
specific learning parameter are εj and %j as in the following
equations:

εj(t) = εinit(
εf
εinit

)
aj(t)
amax with εinit ≥ εf , (17)

%j(t) = %init(
%f
%init

)
aj(t)
amax with %init ≥ %f ,

where amax is the maximum ellipsoid age.
This mechanism allows to selectively force the conver-

gence of each code-book ellipsoid and therefore it is possible
to cope with a dynamically changing training set.

C. Pruning

One of the problems introduced with the incremental
learning mechanism is the possible growing of the number
of particles that can appear during learning but that cannot
be eliminated.

In order to achieve a fast convergence maintaining the
forgetting capability and performances increasing over long
time simulation, a pruning strategy has been implemented.

Thanks to the supervised classification process, each time
one particle is selected as the nearest to the presented input
pattern (its distance is under the threshold Eth), a recall phase
is performed and the resulting class is compared with the real
one contained in the input pattern. Considering that the class
number is a discrete variable while algorithmic outcomes
are continuous, a classification error means that the distance

Fig. 3. Image of all laboratory tools used to create the input data set.
Image has been acquired at VGA resolution (640pxx480px)

between the reconstructed class number nz and the pattern
class number nt exceeds a user defined threshold (cth ≥ 0)

|nz − nt| ≥ cth (18)

In this way for each particle j, at time t, it is possible to
compute an error rate ej(t) as follows:

ej(t) =
nerr,j(t)
nwins,j(t)

, (19)

where nerr,j is the number of times the particle j was the
nearest during recalls and test phase led to a classification
error; nwins,j is the total number of times the particle j was
the first ranked among the others.

After code-book j has expired its life (i.e. aj ≥ amax),
if its error rate (ej) is above a tolerance threshold (rth) the
corresponding particle is erased. In the other cases it is held
frozen with a minimum learning parameter (i.e. ε = εf and
ρ = ρf).

IV. EXPERIMENTAL SETUP

Experimental images have been acquired to test the al-
gorithm performances. In order to consider a realistic visual
flow on autonomous robot, both resolution and overall quality
of the images have been kept low (i.e. no particular light
conditions nor lens quality have been considered to ensure
images with high saturation, sharpness and contrast). Testing
objects have been chosen from common laboratory tools
(see an example in Fig. 3). Visual cues have been extracted
with OpenCV library [12] and a custom made simple seg-
mentation algorithm through a host PC with low-resolution
webcam (640px x 480px). It must be remarked that con-
sidering a frame rate of 30fps, at the chosen resolution,
simple segmentation routines can be easily performed in less
than ts = 1

60s in modern PC leaving at least tl = 1
60s

(tl = tfps−ts) for classification learning. A reduced feature-
space of the outcomes of the segmentation process is shown
in Fig. 4 with one grey-scale value per each class.

V. EXPERIMENTAL RESULTS AND COMPARISONS

The input data set T = {i1, i2, ..., iN} has been built of
N = 1300 different images where only one object is present
each time. Six different classes were chosen, one for each

Fig. 4. Reduced feature-space obtained after segmentation. Depicted
dimensions have been reduced from six to three (i.e. em, eM and A). Each
grey-scale value stands for a different class. It can be noticed that patterns
from all three scree-drivers have reduced Euclidean distance in this feature
sub-space (on the left).

Fig. 5. Flow of the segmentation process. First a gaussian filter is applied
(top-left), then the Canny algorithm generates a binary image (top-right) and
finally meaningful contours are isolated (bottom-left). Segmented object area
is determined and the same portion of the original image is extracted for
color space based statistical analysis (bottom-right).

object present in Fig. 3. It is important to be noticed that
three similar screw-driver were selected. As it is possible to
see in Fig. 4, correspondent feature pattern clusters are very
near (e.g. with and Euclidian distance definition) therefore
the classification task is not trivial.

The typical segmentation flow performed by the PC is
depicted in Fig. 5. The camera image is preprocessed with
a gaussian filter, then a hue-based threshold and Canny
segmentation [13] is applied and then meaningful objects are
extracted through contours selection. During a testing phase,
at the time t, we considered the error index eT (t) that can
be computed basing on classification errors as follows:

eT (t) =
nerr,T (t)
amax

, (20)

where nerr,T is the number of classification errors occurred
in the time window [t− amax, t].

The parameters used in this experiment are: εinit = 0.5,
εf = 0.02 · εinit, ρinit = 0.01, ρf = 0.02 · ρinit and
amax = 3500. Considering that in each frame a meaningful

Fig. 6. Two different views of the reduced normalized features space (em,
eM and A) together with code-book ellipsoids after learning.

Fig. 7. Number of code-book ellipsoids (m) through learning with respect
to the time (algorithm iteration number). The number of particles decrease
for a while, around iteration 3500, due to the pruning strategy that allows
each j particle to be erased when aj ≥ amax .

pattern is present, the algorithm converges in less than 500
iteration to an error eT ≤ 0.07 with an average computational
time for each iteration cycle (including learning and recall)
of tl = 5 ms. Calculations were performed on a laptop
double core 2.2GHz with 2GB RAM. An example of how
particles look like after learning is shown in Fig. 6. As
briefly introduced in the previous sections starting from a
number of ellipsoid m(0) = 0 as initial condition, m(t)
increases through iteration as shown in Fig. 7. As it is
possible to see in Fig. 7, the maximum number of particles
used to classify the objects is about m = 30. This number
is quite low with respect to the total number of different
training patterns presented to the algorithm (N = 1300).
Considering one learning algorithm iteration at each acquired
frame with an image frame rate of 30fps (tfps = 1

30 s =
33.3 ms), an elaboration time ts ≤ 28 ms (ts = tfps − tl)
can be used for segmentation and other control algorithm.
Moreover, the same parameters lead toward a eT ≤ 0.015 in
2500 iterations (t = 12.5s of computational time without
image acquisition and segmentation in our hardware setup)
and eT ≤ 0.005 in 15000 iterations (i.e. t = 75s).

In order to be comparable even in supervised and semi-
supervised problem solving, the classic SOM has been
trained with a discrete class parameter and a test phase has
been introduced at each iteration.

For a given pattern x, the Best Matching Unit j∗ (BMU,

Fig. 8. Error indexes eT comparison between implemented NGPCA (solid
line) and Self-Organizing Map approaches with 50 by 50 neurons (dashed-
line) and 200 by 200 neurons (dotted-lint) through learning iteration.

i.e. the nearest unit under Euclidian metric) is chosen just
using distance on the features part f of the x vector as
follows.

j∗ = argminj(fj − fx) with j = 1, 2, ...,mS , (21)

with ms number of neurons in the Self-Organizing Map. The
classification error is then evaluated on the class part of the
vector (i.e. n parameter) between the BMU and the presented
pattern as in inequality (18).

SOM with a relatively large number of neurons (i.e.
SOM50 with 50×50 neurons and SOM200 with 200×200)
have been tested.

The same error value eT has been calculated, according
to equation (20), during learning in supervised classification
with SOMs.

It is possible to observe that, in our simulations, the
larger is the number of neurons of the map the smaller is
the overall classification error. SOM with 40000 neurons
performs largely worse than NGPCA. The error decrease in
the first part of the learning for the considered algorithm is
depicted in Fig. 8. Table II summarizes results comparison
between different structures through learning process,

TABLE II
PERFORMANCE ANALYSIS TABLE

NGPCA SOM
i mi eT [%] eT,S50 [%] eT,S200 [%]

500 22 7 21 14
2500 26 1.5 12 7
15000 30 0.5 4.5 2

where eT,S50 and eT,S200 are respectively the classification
error rate calculated in SOM50 and in SOM200 maps.

It must be noticed that for a correct algorithm convergence
in SOM many parameters have to be chosen. This implies
that this kind of approach needs a temporal horizon that fixes
the period of time in which different meaningful pattern have
to be presented. In this way, comparisons are performed in
the NGPCA worst case: all patterns are presented long before
the SOM starts freezing. In real case in a robotic application
the converging time could not be determined.

The proposed incremental on-line version of NGPCA
with growing and pruning mechanisms solves this problem
completely.

The complexity of the NGPCA algorithm is O(m ·q) with
m number of code-book ellipsoids and q is the number of
principal components.

VI. CONCLUSIONS

In this work an on-line classification application of the
Neural Gas with Principal Component Analysis is presented.
Both the algorithm and the whole experimental setup have
been chosen for straightforward porting of the architecture to
a PC-based object manipulation in a roving platform. Under
this point of view, the error-to-performances trade-off of the
learning process is selectable through parameter tuning and
the overall computational cost of the algorithm can be kept
low, even for a embedded version of the classifier. The model
input-output variables can be changed at any time for a given
learning. A first comparison with standard structures, like
Self-Organizing Maps, shows a higher level of flexibility
without error nor complexity increase. Nevertheless, for a
complete classification capability, focused on robot action-
perception closed loop application, the proposed algorithm
should be further developed in a fully unsupervised classifier.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the European
Commission under the project ICT 216227 - SPARK II

“Spatial-temporal patterns for action-oriented perception in
roving robots II: an insect brain computational model”.

REFERENCES

[1] Martinetz, T. M., Berkovich, S. G., and Schulten, K. J., “Neural-
Gas network for vector quantization and its application to time-series
prediction”, IEEE Transactions on Neural Networks, 4, pp. 558-569,
1993.

[2] Tipping, M. E., Bishop, C. M. , “Mixtures of probabilistic principal
component analyzers”, Neural Computation, vol. 11, pp. 443-482, 1999.

[3] Möller R. and Hoffmann, H. , “An extension of neural gas to local
PCA”, Neurocomputing, vol. 62, 305-326, 2004.

[4] Hoffmann, H., Möller, R. , “Unsupervised learning of a kinematic arm
model”, Artificial Neural Networks and Neural Information Processing,
vol. 2714, (ICANN/ICONIP), LNCS, Kaynak O, Alpaydin E, Oja E,
Xu L, Springer, Berlin, pp. 463-470, 2003.

[5] Kohonen, T. , “Self-Organizing Maps” Springer, Berlin, 1995.
[6] H. Cruse and U. Steinkuhler, “Solution of the direct and inverse

kinematics problems by a common algorithm based on the mean of
multiple computations”, Biol. Cybernetics 69, pp. 345-351 2, 1993.

[7] P. Arena and L. Patané, “Spatial Temporal Patterns for Action Oriented
Perception in Roving Robots”, Springer, Series: Cognitive Systems
Monographs, vol. 1, 2009.

[8] EU Project SPARK II, website online at www.spark2.diees.unict.it
[9] Hinton, G. E., Dayan, P., and Revow, M. “Modeling the manifolds of

images of handwritten digits”, IEEE Transactions on Neural Networks,
vol. 8, pp. 65-74, 1997.

[10] Möller, R. “Interlocking of learning and orthonormalization in
RRLSA”. Neurocomputing, vol. 49, pp. 429-433, 2002.

[11] Ouyang, S., Bao, Z., Liao, G.S. , “Robust recursive least squares learn-
ing algorithm for principal component analysis”, IEEE Transactions on
Neural Networks, vol. 11(1), pp. 215-221, 2000.

[12] OpenCV website homepage online at http://opencv.willowgarage.com
[13] Bill Green, “Canny Edge Detection Tutorial”, 2002 online at

www.pages.drexel.edu

