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Abstract— Since many years insects have been considered as a
source of inspiration for robotic architectures. From this point
of view the fly Drosophila melanogaster is more than likely
a protagonist, because of the genetic techniques that allow
neurobiologists to make deep studies and hypotheses about
the brain of this fly. In this work a computational model of
the Drosophila has been tested and implemented on a robot
simulator. Moreover, the normal capabilities of the fly have
been extended in order to have an useful robot-oriented model.
Results about a possible application in a real-life scenario of
the whole model of the Drosophila brain are reported.

I. INTRODUCTION

IN the last years animals have considerably influenced
robotics. Robotics can improve the research in biology

[1] and, moreover, without any doubts results in neurobiology
helped the design of robotic structures and control systems
[2], [3], [4].
In particular, insects attract the interest because the relative
small number of neurons in their brain contrasts with their
behavioral complexity. Insect strategies in problem solving
have been analyzed and adapted to the implementation in
mobile robots [5], [6]. In this way, the modeling of insects
brain functionalities seems to be really useful in order to
develop efficient robots.

The fly Drosophila melanogaster has become the reference
point in the insect brain modeling, thanks to the genetic
techniques that allow a deep functional analysis of its brain
neuropils. Brain structures and functionalities of this fly
have been modeled and implemented on real robots [7], [8].
Moreover, the Drosophila behavior inspired control systems
useful for robotic applications [9].

The goal of this work is to simulate and test a compu-
tational architecture presented by the authors in [10]. This
model is inspired by recent experiments on the study of the
Drosophila brain. Moreover, the proposed appoach shows the
advantage to be potentially improved and generalized to be
useful for real robotic applications.

An overview of the considered computational architecture
of the Drosophila melanogaster brain is presented in Section
II, while Section III and IV describe the simulation setup and
the obtained results used to validate the model. A possible
real life application of the computational model is finally
reported in Section V.
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Fig. 1. Computational architecture of the Drosophila melanogaster brain.
See [10] for details.

II. A SKETCH ABOUT THE Drosophila BRAIN

COMPUTATIONAL MODEL

The computational model of the Drosophila brain, illus-
trated in [10], is shown in Fig. 1. The model has been
designed analyzing biological experiments regarding the
olfactory conditioning [12], [13], [14], the visual learning
[15] and the orientation memory [16] in real flies. The
mainly involved structure of the Drosophila brain are Central
Complex (CX) and the Mushroom Bodies (MBs). These
neuropils have been functionally analyzed in [17], [18], [19].
In this paper a computational model of this relevant structures
is proposed. The visual pathway mainly involves the CX
model through the ellipsoid body (EB), the fan-shaped body
(FB) and the protocerebral bridge (PB) models, while the
olfactory pathway goes through the sub model MB(1) of the
MBs. The olfactory classical conditioning has been modeled
by the Spike Timing Dependent Plasticity (STDP) algorithm
[20], [21]. The Behavior Selection Network (BSN) is a
spiking neural network that allows the robot to select the
most suitable behavior in order to satisfy its Drives. Drives
are related to the internal state of the robot. The behavior
evaluation model is a mathematical block, inspired from
the MBs functionalities [22], that excites (or inhibits) the
ongoing behavior if it is being successful (or not). A detailed
description of the model can be found in [10].

III. SIMULATION SETUP

The target of this work is to simulate and analyze the
capabilities of the proposed computational architecture. De-



tails about the robotic simulator and the implementation of
the simulation environment are presented in this Section.

A. The robot and the simulator

The robot used in the experiments is a Pioneer P3-AT
differential-drive roving robot. The platform operates as a
server in a client-server environment; the onboard PC is used
to host the control architecture. The robot dimensions are
50cm x 49cm x 26cm and its weight is 9 Kg.

MobileSim (http://robots.mobilerobots.com) is the soft-
ware used for simulating the Pioneer P3-AT roving robot in
a virtual 2D environment. This simulation environment, that
is extremely realistic (e.g. odometry errors are taken into
consideration), has been used to evaluate the performance of
the proposed control system.

B. Implementation of odors, punishments and rewards in the
simulator

In order to implement olfactory classical conditioning it
is necessary for the robot to have sensors that can detect
odors and that can monitor rewards or punishments given
to the robot. In a simulation environment it is convenient to
implement virtual sensors. For instance, if an object releases
an odor called Odor1, it is convenient to assume the output
of the olfactory sensor as a Gaussian function of the distance
d from the robot to that object:

fod(d) = Kode
−d/τod (1)

where Kod is a constant gain and τod represents the decay
of the sensor output when the robot moves away from the
object.
It is possible to use a similar strategy to determine the output
of a punishment sensor and the output of a reward sensor:

fpun(d) = Kpune−d/τpun (2)

frew(d) = Krewe−d/τrew (3)

The values of the constants can be determined in order
to obtain a tighter Gaussian function for the output of the
punishment and reward sensors: in this way, if the robot is
approaching the object, it will first detect the odor and then
it will be rewarded or punished if that object is not neutral.

IV. SIMULATION RESULTS

This section presents the experiments made in order to
validate each model of the general computational architecture
of the Drosophila melanogaster brain.

A. Mushroom Bodies and olfactory learning

The following simulation shows how the MBs model for
odor learning works. This model is shown in Fig. 2. Each
neuron is an Izhikevich Class I spiking neuron [23]. The
simulation of the model has been done using the Euler
integration method with a constant integration time of 20
milliseconds. The synapses time constant is 800 milliseconds
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Fig. 2. Olfactory Learning Model. solid line (dashed) connections corre-
spond to fixed (plastic) synapses; arrows (bullet) correspond to excitatory
(inhibitory) connections.

Object Odor P/N/R
Object A Odor 1 Punishment
Object B Odor 2 Reward
Object C Odor 2 Punishment
Object D Odor 2 Neutral

TABLE I

SUMMARY OF THE CHARACTERISTIC OF THE OBJECTS IN THE MBS

MODEL TEST.

and synaptic weights are initialized to the value of 0.05. A
priori known information is codified in the fixed synaptic
weights that have been initialized to the value of 10 (excita-
tory) and -3 (inhibitory). A decay rate has been introduced:
every 100 simulation steps all synaptic weights are decreased
by 1% percent of their value. The implemented network is
the same as shown in Fig. 2. This simulation was performed
to verify the capability of the MBs model to make the right
associations between odors and rewards or punishments in a
complex environment. The robot is introduced into a square
arena, 10m x 10m, in which four objects are present. There is
an odor spreading out from each object in the environment.
In particular, Eq. 1 has been used. Two different odors are
associated to these objects and a reward or a punishment
is given to the robot when one of the objects is reached,
following the association reported in Table I.

Exploring the environment shown in Fig. 3, the robot has
to learn that there is a strong association between the Odor 1
and the punishment: in a testing phase, the robot will be able
to escape when detecting that odor, before the shock occurs.
The behavior of the network neurons during the simulation
is shown in Fig. 4 while Fig. 5 presents the trend of the
synaptic weights during the simulation. The network evolves
for 100 simulation steps for each robot action. At the end
of the simulation, the robot has explored the environment
completely and it is able to make the right association. Other
experiments were performed, obtaining similar results.

B. Protocerebral bridge and fan-shaped body

Through a functional analysis of the Drosophila protocere-
bral bridge and fan-shaped body, it is possible to suppose
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Fig. 3. Simulation environment used for the MB model test.
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Fig. 4. Simulation results of the olfactory learning model: behavior of the
neurons membrane potential during simulation. The implemented network
is shown in Fig. 2.

that object detection and distance estimation are mainly
performed by the PB, while the FB is related to feature
extraction and classification. In the following experiments,
the properties of the PB and FB models and the capabilities
of the robot in terms of visual learning are presented.

In particular, the proposed simulation is inspired by the
experiment designed by Liu and collaborators on real flies
[15] about visual learning and object recognition. The robot
has to explore a square arena, (10m x 10m), in which four
objects are present. Even if these objects are different, they
can have some similar features. The objects used in this
simulation are shown in Fig. 6. Every time the robot meets
an object, it tries to recognize that object, extracting features
and comparing them with the stored ones. If the robot meets
an object for the first time, it extracts and stores the new
features. It has been assumed to consider six features: color
(in the Hue Saturation Brightness representation, here only
the Hue value is considered), orientation, size, center of
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Fig. 5. Simulation results of the olfactory learning model: trend of the
synaptic weights during the simulation. The implemented network and the
meaning of the parameters are illustrated in Fig. 2.

(a) (b)

(c) (d)

Fig. 6. Objects used in the fan-shaped body model simulation. (a) blue
inverted T-shape; (b) green upright T-shape; (c) blue upright T-shape; (d)
green inverted T-shape.

gravity position, wideness and height. The meaning of the
features is clarified in [10]. The PB model has been set so
that the robot is able to detect objects in a range of four
meters. Objects triggering punishment shock the robot if its
distance from these objects is less than 2.7 meters. In this
experiment the color “green” is a bad feature: the robot will
be punished every time it tries to approach a green object.
Therefore the robot has to learn to avoid green objects. The
arena and the simulation results are shown in Fig. 7. At
the beginning of the simulation, the robot tries to approach
every object standing in its visual range. If punished, the
robot increases the punishment value of the features of the
approached object. If an object is neutral, the punishment
value of the features associated to that object decreases. If
the escaping value of an object reaches a threshold, the robot
will escape when that object is detected. In this simulation
the robot learns correctly to avoid green objects. Fig. 8 shows
also the punishment value of the bad feature (green color)
and the punishment value of a neutral feature, the wideness,
that is the same for all the objects. In order to implement a
hysteric response, when the punishment value exceeds 2, it is



Fig. 7. Robot trajectories obtained during the testing of the fan-shaped
body model. After being punished enough times, the robot is able to isolate
the dangerous feature (the green color) and escape when a green object is
found.
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Fig. 8. Comparison between the punishment value of the dangerous feature
and the punishment value of a neutral feature, the wideness. Using the
punishment value algorithm the robot is able to discriminate the dangerous
feature. The decreasing of the Punishing Value of the dangerous feature is
due to the steps in which the robot can detect a green object but is not so
near to be punished.

simply raised to 7. In this way the robot will remember this
bad feature association for a long time, even if the learning is
not reinforced. If the robot detects an object, the punishment
value of all the features that do not belong to that object
will remain the same. A time-dependent decay rate could
also be introduced. In a second experiment, the robot has
to learn to avoid each “T” object. Color is now neutral for
the robot. Even if the shape is not a feature, a T is different
from an inverted T because of the different center of gravity.
This experiment leads to the same conclusion of the first
experiment; the robot is able to recognize bad features and
to avoid them.

C. Ellipsoid body

In real fruit flies, the ellipsoid body is necessary for a
visual short-term memory and orientation [16]. A polar path
integration system is present in the architecture to model

Home 
Position

Robot steps from Home Robot mean vector pointing Home

Fig. 9. EB results. The relative position of the robot with respect to the
Home is represented in polar coordinates and it is indicated in millimeters
(distance) and degrees (angular position). In this case the current robot
position is r = 5730 mm, ν = −12.23 degrees.

the ellipsoid body. Supposing that an object (in our case
the home) is the origin of the polar reference system, the
distance of the robot to the object is indicated with r, while
the position of the robot is represented by the angle ν.

In the following simulation the behavior of the EB model
while the robot is moving around the environment is eval-
uated. In the simulated environment an odometry error has
been introduced, to make the results more realistic. In this
first experiment we want to show how the ellipsoid body
model works: the robot must be able to orient and update its
position while moving into a square arena (8m x 8m). The
robot starts from the Home position and moves randomly in
the arena: its capability to update its relative position with the
Home is analyzed. Of course the coordinates stored into the
robot memory will be different from the real ones, because
of the odometry errors and the approximation of the path
integration method. Fig. 9 shows an example of trajectory
and the response of the ellipsoid body. The same test has
been repeated many times, in order to make a better analysis
of the model.

In order to test the capability of the model in real situ-
ations, it is convenient to simulate the robot behavior and
the EB response in more complex arenas. In the following
experiment the robot has to explore a large arena, in which
several objects are present. The robot starts from the Home
and initially it moves randomly: this behavior is created to
simulate a typical escape reaction of real flies when newly
introduced into an arena.
After that, the robot starts an Exploration behavior. If the
robot meets objects it is able to learn about their danger or
neutrality, thanks to the MBs model. During the exploration,
the robot updates its position from the Home. An obsta-



(a)

(b)

(c)

Fig. 10. The robot starts to move and, after the escaping reaction
implemented to match the biological experiments with real flies, it begins an
exploration (a). The escaping reaction from the Home position to position
(a) is not outlined for clarity reasons. After fifteen exploration steps, the
battery level is low and the robot starts its homing behavior (b). Using an
obstacle avoidance algorithm, the robot is able to return to the Home (c).
In order to have a more complex simulation, some objects have been also
introduced into the arena, but these did not influence the results.

cle avoidance mechanism was also implemented. During
this experiment two behaviors are available: Exploration
or Homing. The level of the battery decreases while the
robot explores the arena. A virtual battery sensor has been
implemented. If the level of the battery is too low, the BSN
switches the selected behavior to the Homing behavior. If
the stored position is correct, the robot must be able to
return to the Home position. Obstacle avoidance is used also
during the Homing behavior. Simulation results are shown
in Fig. 10. The robot starts to move and, after the escaping
reaction implemented to match the biological experiments
with real flies, it begins an exploration (a). The escaping
reaction from the Home position to position (a) is not
outlined for clarity reasons. After fifteen exploration steps,
the battery level is low and the robot starts its homing
behavior (b). Using an obstacle avoidance algorithm, the
robot is able to return to the Home (c).

D. Behavior Selection

In order to allow the robot to choose the “right” behavior,
the Behavior Selection Network has been introduced into
the model. This network is shown in Fig. 11. The BSN has
been tested and its properties have been analyzed. In a real
implementation of the model the drives are the inputs of the
first layer of the network.

In the following simulations hypothetic drives have been
simulated in order to study the response of the BSN in
different possible situations. This experiment shows how the
Behavior Selection Network works. It has been assumed to
have four drives and to represent these drives with four input
currents. In this first example the following synaptic weights
have been used: W12 = W21 = W31 = W32 = W43 = 1.5;
W11 = W22 = W33 = W44 = 10; Y12 = Y13 = Y14 = −3;
Y21 = Y23 = Y24 = −3; Y31 = Y32 = Y34 = −3;
Y41 = Y42 = Y43 = −3; Y11 = Y22 = Y33 = Y44 = 3.
(see Fig. 11 for the network topology). A random Gaussian
noise has been added in the input currents (σ =2). Fig. 12
presents the behavior of the neurons of the network. When
a second layer (WTA layer) neuron is firing faster than the
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Wij Yij
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Fig. 11. Spiking network used to simulate the Behavior Selection
functionalities. Drives are represented by input currents. Each drive can
excite more than one behavior. Synaptic efficiencies between the input layer
and the WTA layer represent the influence that each drive has in each
behavior. Only the most excited behavior can win the competition and can
be selected.

others, the respective behavior is selected. The network has
been simulated for ten thousand simulation steps, with an
integration step of 20 milliseconds. During a short transient,
all the WTA neurons are firing: this situation is due to the
response of the synapses between WTA neurons. After this
transitory period, only one neuron can win the competition.

V. REAL LIFE SCENARIO APPLICATION

In the previous sections a model of the main parts of
a fly brain computational model has been tested. Herewith
the capability of the model to solve real useful problems is
shown. By modifying the behavior repertoire but maintaining
the conceptual structure of the general model we can obtain
a versatile robot that is able to learn about the environment,
to make choices and to face potentially dangerous situations.
The experiment presented in this section is only one example
of the real applications of the insect brain model, and it could
be easily modified or generalized.

A. Description of the experiment

Let us imagine to have a critical situation in which, after
a disaster (e.g. earthquake, fire) it is necessary to rescue
people trapped in a place. Often situations like this are very
dangerous both for survivors and people who try to help
them. Now let us image to have a smart robot able to explore
the environment and which can learn, recognize people and
remember their position. Such a robot could manage a critical
situation acquiring the information needed to solve it. In
the present experiment an environment that can represent
a place after a disaster has been implemented into a robot
simulator. The robot has to explore the environment, find
some good objects that it is able to recognize, remember their
position and learn about all kinds of danger present in the
environment. At the end of the exploration, the robot must
escape from the environment and give all the information
useful for humans to know the position of the survivors
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Fig. 12. Results of the simulation of the BSN. After a short transient
in which all the WTA neurons are firing, only one neuron can win the
competition. The transient is a consequence of the time response of the
synapses between WTA neurons. Variation of the drives could also lead
to new transient, in which the WTA neurons compete. A low value of the
auto-excitatory synapses weights in the WTA layer can cause a continuous
switching of the selected behavior, while a too high value leads to a
conservative behavior selection.

and organize a safe rescue. In order to solve this problem,
the behavior repertoire of the robot has been limited to
two possible behaviors, exploration (rover type, see [10]
for more details) and homing. In the same way, two drives
are considered, Curiosity and Sleep, the latter indispensable
for the robot to understand when to leave the environment
and return home; for this, a virtual battery level sensor is
used. The MBs model was also simplified: only the olfactory
learning model will be considered. The synaptic weights, the
synapses time constant and the integration step are the same
of the previous simulations. To make the simulation light,
every robot step of the robot includes only one hundred
simulation steps of the MBs and BSN neural networks.

The arena implemented for the simulation and the results
are shown in Fig. 13. The Home represents the starting
point for the robot exploration and the point the robot has
to reach at the end of the simulation. S1 and S2 represent
the position of the targets: let us assume the robot considers
them as interesting objects and, after an approach, it is able
to recognize them. Let us assume that the targets are a blue
T-shaped object and a blue inverted T-shaped object. Also
present are Obj1, Obj2 and Obj3, which are identical among
one other. The robot cannot see them, but can sense them

thanks to another sensorial system (i.e. olfactory). The robot
is punished every time it tries to approach them. In the
environment, two other objects are present, a green upright
T-shaped object and a green inverted T-shaped object. The
robot can detect them with the visual system. The robot is
punished only when it tries to approach the first one, while
the second one is neutral.

After a long exploration, the robot must be able to detect
the targets, learn to avoid as soon as possible the objects
Obj1, Obj2 and Obj3, understand that the green upright T-
shaped object is dangerous and finally reach the Home and
give the position of the targets at the end of the exploration.
Mushroom Bodies model will be used for the learning
involving Obj1, Obj2 and Obj3; the protocerebral bridge
model will be used for the detection of the objects and the
fan-shaped body model for the visual learning; the ellipsoid
body model is indispensable for homing and remembering
the position of the targets. For this simulation, the capabilities
of real flies have been extended, for instance, improving the
performances of the EB that is now able to store multiple
target information in a long term memory. This is an example
of how the elementary functions of the Drosophila brain that
allows the insect to face with its world can be easily extended
in a modular way to make a robot able to fulfill more complex
tasks, not affordable for the real fly. The Behavior Selection
Network is useful to select the homing behavior if the battery
level is too low. The parameters of the model have been set
so that the robot can sense odors if its distance is lower
than three meters away from the nearest odor source, while
it is punished if its distance from that source is less than
one meter. In the same way, the visual system of the robot
can detect objects if they are closer than 2.5 meters. It is
punished if an object is closer than 1.5 meters. The arena
used for the simulation is 28m long and 15m wide.

B. Results

In this section experimental results from one of the sim-
ulations are shown, discussing step by step the behavior of
the robot. Only the most relevant robot steps are depicted in
Fig. 13, for the sake of clarity. Besides, Fig. 14 shows the
MBs model response during the whole simulation.

At step 1 the robot starts the simulation from the Home
position. At the second step the robot enters the arena and
begins an exploration behavior. The ellipsoid body model
updates the position of the robot. Neurons of the MBs model
are not stimulated and they lie in their silent state. At the
following step (step 5, not shown), the robot uses the increase
of the mean free path algorithm. The EB model updates
the position of the robot. During the exploration, the robot
must find objects and sense odors. At step 9, the robot
senses Odor1, but it is not punished, because it is not close
enough to Obj1. In the following step the robot continues
its exploration following the increase of the mean free path
algorithm, while the EB model updates the position it has
stored.
At step 11 (not shown), the robot detects the green T-shaped
object. The FB model extracts features from this object and
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Fig. 13. Most relevant robot steps of the proposed simulation. After the
exploration of the environment the robot returns to the Home and gives the
position of the target S1 and S2. Moreover, information about the dangers
in the environment are stored in the FB and the MBs model.
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Fig. 14. Mushroom Bodies model response obtained during the simulation.

the robot tries to approach it. While the robot is approaching
the new object, it is punished (step 12).
After being punished, the robot escapes from the green up-
right T-shaped object (step 13). It experiences an unexpected
situation: the robot sensed Odor1 but was punished after two
subsequent steps, due to the punishing visual input, and not
for the odor. So, even if not planned in this way, the robot
has made an association between Odor1 and Punishment.
This situation is plausible and is a natural consequence of
the correlation implementation of the STDP learning. As a
consequence, the association between Odor1 and the need
to escape is reinforced. While it is escaping, the robot again
detects Obj1, senses Odor1, is punished and escapes again
in the opposite direction (step 14, not shown), reaching
once more the green inverted T-shaped object (step 15). The
robot is then punished for the third time. At step 16 (not

shown), the robot is escaping again. At step 20 and 21 the
robot is sensing Odor1 again, without being punished. It is
very interesting to analyze how the MBs model responds
to this contradictory situation. Studying the firing of each
neuron of the MBs model, it is possible to see that at a
first time the robot was punished immediately after sensing
Odor1, while at a second time it senses Odor1 but it is
not punished. In this way, at a first time the robot made an
association between punishment and Odor1, but at a second
time this association was weakened. However, the synaptic
weight between the Odor1 neuron and the Escape neuron
of the olfactory learning model was not high enough to
make the robot escape when sensing again Odor1, without
being punished. Now the robot continues its exploration of
the arena. At step 22 the robot is near Obj2, it is sensing
Odor1 again but it is not close enough to be punished. The
association between punishment and Odor1 must decrease
again. While exploring, the robot detects the first target
(step 27). The fan-shaped body analogue extracts the features
of the object, the robot recognizes the target and tries to
approach it. The EB model stored the position of the robot.
The target S2 is now reachable in the future. The robot leaves
the object and begins another exploration.
After many steps, the robot detects and reaches the target
S1 and stores its position (step 41). After leaving the second
target, the robot begins another long exploration. At step
55, the robot is into the area of detection of the green T-
shaped object, but in this case the PB model leads the robot
to consider this object repulsive because it is standing in the
rear of the robot, therefore the robot leaves the object. The
robot continues its exploration and, detecting Obj3, the robot
senses Odor1 again at step 59. At step 63, the robot is close
enough to Obj3 to be punished. Because of the position of
the robot, the punishment is not so strong, but the robot
is sensing Odor1 and it is recalling the association with
punishment: even if the Punishment neuron only spikes once,
the robot escapes.
Analyzing MBs response and the synaptic weights at step 64,
it is evident how the robot reinforced the association between
Odor1 and Punishment, as shown in Fig. 15. Learning
allowed the robot to escape fast, without strong punishment.
After escaping, at step 65, the robot meets again the green
T-shaped object. While the robot tries to approach it, the low
output of the virtual battery sensor determines the behavior
and initiates homing behavior. The EB model is involved to
remember the Home position. The response of the EB model
at step 65 is shown in Fig. 16. At steps 67, 69 (not shown)
and 71 the robot tries to return to the Home position. At
the end of the simulation, the robot can communicate the
approximated position of the targets. Moreover, the robot
is aware of the association between an odor and a danger.
Nevertheless, in this simulation, the robot was not able to
safely associate a visual feature with reward or punishment,
because it has been punished only once while approaching a
landmark.
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Fig. 15. Trend of the synaptic weight of the synapses between the Odor1
receptor neuron and the Escape neuron, in the pre-motor area. The synaptic
weights of the MBs olfactory learning model are subject to STDP learning.
The higher the value of the weight is, the faster the robot will escape if
punished while sensing that odor. If the weight exceeds a certain threshold,
the robot sensing that odor will escape even if not punished at all. For
clarifications about the parameters, the model implemented is shown in
Fig. 2.
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Fig. 16. During the simulation, the EB model estimates the distance of the
robot from the Home position. Errors in the position are due to the simulated
odometry error and to the path integration method approximations.

VI. REMARKS AND CONCLUSIONS

A computational model inspired by the Drosophila
melanogaster brain has been implemented within a robot
simulator.
The olfactory learning model is a two layer spiking neural
network and the STDP algorithm has been used for the
learning implementation. This algorithm allows the robot
to make associations involving odors in complex environ-
ments. The orientation memory has been tested through
the simulation of the ellipsoid body model. The Behavior
Selection Network has been simulated with hypothetic drives.
Moreover, the whole architecture has been simulated in an
application useful for real life scenarios. The reported results
demonstrate that the proposed computational model can be
successfully applied to real robots to solve tasks in complex
environments.
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