
Chapter 11
Robotic Platforms and Experiments

P. Arena, S. De Fiore, D. Lombardo and L. Patané

Abstract To reach the challenging objectives of the SPARK project the research
pathway followed different levels of abstraction: mathematical models, insect be-
havior study and bio-inspired solutions for robotics. We investigated biological prin-
ciples as a source of inspiration and we finally applied the mechanisms provided by
the complex dynamical system theory to realize mathematical models for cognitive
systems. All these aspects deeply investigated in previous Chapters, are here ap-
plied to solve specific tasks. A series of wheeled and legged robots are described
and applied as test beds for the proposed action-oriented perception algorithms. The
cognitive architecture has been experimentally tested at multiple levels of complex-
ity in different robots. Details on the robotic platforms are given together with a
description of the experimental results that include multimedia materials collected
in the project web page.

11.1 Introduction

The complete model for action-oriented perception, that has been outlined in the
previous chapters, is a modular architecture structured with parallel pathways and
hierarchical structures. Basically the inspiration comes from the insect world even if
the idea was not to biologically reproduce an insect brain model but to deeply under-
stand insect cognitive behaviours for a possible implementation. The experimental
phase was the last step of our activities, aiming at validate the proposed control sys-
tem. The evaluation procedure was carried out both by using virtual agents working
in dynamic simulation environments and with real robots. In particular to test at
different levels of complexity the cognitive architecture, both wheeled and legged
robots were designed, realized and used.
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In particular, when the whole complex perceptual architecture had to be tested, a
dual drive wheeled structure was used, due to its simple structure and motion control
strategy. On the other hands, the design and realization of legged machines was
performed primarily to implement low level bio-inspired locomotion strategies, like
the Central Pattern Generator and the decentralized locomotion control (Walknet).
Of course, once the high level perceptual algorithms will be optimized and tested,
these will be transferred from the wheeled to the legged machines to explore the
emergence of perceptual algorithms from locomotion primitives.

Two roving platforms have been used for the demonstration: Rover I and II. The
control architecture of both rovers consists in a low level layer based on micro-
controllers that handle the motor system and a high level layer that includes the
Eye-RIS visual system as a main controller together with the SPARK board. The
rovers are also endowed with a suite of different sensors and can be interfaced with
a PC through a wireless communication link.

As far as the legged structure is concerned, mainly two different robots have
been developed. The former is called MiniHex. It is a mini-hexapod robot with 12
DoF controlled with a Central Pattern Generator (CPG), realized with a CNN-based
chip. The robot can be telecontrolled from a PC, but can also navigate autonomously
showing phobic or attractive behaviours [6, 1] using three infrared distance sensors
equipped on its head. The latter hexapod is called Gregor III. It is a cockroach-
inspired legged robot and is the final prototype of a series. The core of the system
is the SPARK board that handles the complex sensory system distributed on the
robot. In Gregor III the locomotion control problem has been solved by using both
a CPG and a reflex-based decentralized approach (based on Walknet) that has been
exploited to realize climbing and turning strategies.

The experiments, discussed in this chapter, aim at demonstrate the applicability
of the SPARK cognitive architecture analyzing some specific aspects of the model
as for example: the basic behaviours (e.g. obstacle avoidance), proto-cognitive be-
haviours (e.g. visual homing), correlation mechanisms (e.g. learning anticipation
through STDP), representation layer (e.g. Turing pattern approach to perception).

Eight different experiments are here presented, showing the objectives, the ex-
perimental set-up and the obtained results:

1. Visual homing and hearing targeting;
2. Reflex-based locomotion control with sensory fusion;
3. Visual perception and target following;
4. Reflex-based navigation based on WCC;
5. Learning anticipation via spiking networks;
6. Landmark navigation;
7. Turing Pattern Approach to perception;
8. Representation layer for Behaviour Modulation.

Multimedia materials on the robotic platforms and videos of the experiments are
available on the SPARK Project web page [8].
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(a) (b)

Fig. 11.1 Rover I. (a) Configuration with the visual system in frontal position, (b) panoramic view
configuration.

11.2 Robotic test beds: roving robots

11.2.1 Rover I

The roving robot Rover I is a classic four wheeled drive rover controlled through
a differential drive system. The robot dimensions are 35 cm x 35 cm. Rover I is
equipped with four infrared distance sensors GP2D12 from Sharp, with low level
target sensors (i.e. able to detect black spots on the ground used as targets) and with
an RF04 USB radio telemetry module for remote control operations and sensory
acquisition. The detection range of the infrared sensors is set from 14 to 80 cm. A
visual processor (i.e. Eye-RIS v1.1) can be equipped on the rover in two different
configurations: in the front position for target aiming tasks (see Fig. 1(a)) and in a
panoramic view configuration, obtained with a conic mirror, for homing purposes
(see Fig. 1(b)). The control architecture is shown in Fig. 11.2: the core of the system
is the visual processor Eye-RIS v1.1 that can be used, in substitution of the more
powerful SPARK board, to implement simple pre- proto-cognitive behaviours. A
I2C bus interfaces the visual processor with an ADC board that handles all the other
sensory systems: distance sensors, hearing chip, low level target sensors and a bat-
tery pack control device. The robot is equipped with two 12V 3.5A batteries that
guarantee an autonomy of about 1.5 hours; moreover a control system to monitor
the battery charge level is implemented together with a recharging mechanism that
extends the autonomy of the system in case of time consuming learning sessions.
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Fig. 11.2 Rover I control architecture.

Fig. 11.3 Rover II.

11.2.2 Rover II

Rover II, shown in Fig. 11.3, is an optimized version of Rover I. It is equipped with
a bluetooth telemetry module, four infrared short distance sensors Sharp GP2D120
(detection range 3 to 80 cm), four infrared long distance sensors Sharp GP2Y0A02
(maximum detection distance about 150 cm), a digital compass, a low level target
detection system, an hearing board for cricket chirp recognition and with the Eye-
RIS v1.2 visual system.

The complete control architecture, reported in Fig. 11.4, shows how the low level
control of the motors and the sensor handling are realized through a microcontroller
STR730. This choice optimizes the motor control performances of the robot main-
taining in the SPARK board and in the Eye-RIS visual system the high level cog-
nitive algorithms. Moreover Rover II can be easily interfaced with a PC through a
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Fig. 11.4 Rover II control architecture.

bluetooth module: this remote control configuration allows to perform some prelim-
inary tests debugging the results directly on the PC.

11.3 Robotic test beds: legged robots

11.3.1 MiniHex

The MiniHex robot, shown in Fig. 11.5 is a hexapod robot whose dimension are
15x10x10 cm3 [2]. It is a legged mini-robot with 12 degrees of freedom actuated
with the HS-85MG metal gear servo, which have a weight of 22g each and a stall
torque of 3 kg·cm.

The architecture, endowed on the robot, is completely devoted to suitably control
all the robot actuators for locomotion purposes. The generation of the locomotion
patterns is assolved by a CNN-based VLSI CPG chip realized with the switched-
capacitor (SC) technique that permits a stepping frequency regulation by using an
external clock. The MiniHex is also autonomous from the power supply point of
view. The servomotors are supplied with a pack of four AA Ni-MH batteries at 1.5
V whereas the chip and the electronics are sustained by two 9V batteries stabilized
through a voltage regulator.

The robot can work in an autonomous configuration using three distance sen-
sors for obstacle avoidance and target following tasks. It can be also tele-controlled
thanks to a wireless communication module equipped on board.

The robot speed is in a range between 1 cm/s and 10 cm/s. The robot autonomy
is estimated in a range between 0.5-1h on a flat terrain. Power consumption ranges
between 10 W during walking on even terrain and 15 W during obstacle course.
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Fig. 11.5 MiniHex.

11.3.2 Gregor III

The hexapod Gregor III is the final prototype of the Gregor series. The robot, as
shown in Fig. 11.6, is equipped with a distributed sensory system. The robot’s head
contains the Eye-RIS v1.2 visual processor, the cricket inspired hearing circuit and
a pair of antennae developed using Ionic Polymer-Metal Composite (IPMC) ma-
terial. A compass sensor and an accelerometer are also embedded in the robot to-
gether with four infrared distance sensors used to localize obstacles. A set of dis-
tributed tactile sensors (i.e. contact switches) is placed in each robot leg to monitor
the ground contact and to detect when a leg hits with an obstacle.

The core of the control architecture is the SPARK board, as shown in Fig. 11.7.
The robot sensory system is handled with an ADC board that is addressed by using
an I2C bus, whereas the Eye-RIS v1.2 is interfaced with the main board through a
dedicated parallel bus. The robot is completely autonomous for the power supply.
Two 11.1V , 8A Li Poly battery packs are used: one for the motors and the other for
the electronic boards.

The robot can be used as a walking lab able to acquire and process in parallel
a huge amount of different types of data. For monitoring the system status and for
storing purposes, a wireless module is used to transmit the sensible information to a
remote PC (see Fig. 11.8).

11.4 Experiments and results

11.4.1 Visual homing and hearing targeting

Objectives: This demo aims at proving the reliability of the Rover I robot endowed
with algorithms implementing both visual and hearing routines and related circuits.
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Fig. 11.6 GregorIII.

Fig. 11.7 GregorIII control architecture.

The task to be accomplished consists in a phonotaxis behaviour performed until the
battery level goes under a warning threshold. In this condition, the system triggers
a basic behaviour “inherited” for survival purposes: homing. In the proposed ex-
periment the robot adopts a visual homing behaviour using the visual system in a
panoramic configuration.

Experimental set-up: The robot moves in a 3x3 m2 arena, attracted by the sound
sources that reproduce the cricket calling song. Two speakers are placed near two
opposite walls, whereas a recharging station is located in a corner of the arena.
Rover I is equipped with: Eye-RIS v1.1 in a panoramic configuration, hearing cir-
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Fig. 11.8 Examples of the robot interfaces created to monitoring and storing the status of the
roving and legged robots during the experiments.

cuit, distance sensors, battery level sensor, low level sensors (i.e. for recharging
station detection) and a connector that allows the docking in the recharging station.

Results:
The experiment, described with a block diagram in Fig. 11.9 can be divided into

three different sub-behaviours:

A - Phonotaxis;
B - Visual Homing;
C - Docking.

Phonotaxis: the Rover I navigates in the arena, attracted by the two speakers
that alternatively reproduce the cricket calling song. The hearing chip, equipped on
the robot, processes the auditory information through a biologically-inspired spik-
ing network (described in Chapter 3) and selects the goal direction comparing the
number of spikes emitted by the right and left motor neurons (see Fig. 11.10).

Visual Homing: the homing mechanisms is a “life saving” behaviour that is trig-
gered by the battery level sensor. The idea is to increase the robot operation time
through a recharging mechanism. This procedure is important in case of extensive
experiments performed during learning phases.

In the proposed experiments the “home” is represented by a recharging station
located in a corner of the arena. At the beginning of the experiment, the robot ac-
quires information about the home position, saving in its memory a panoramic view
of the arena acquired from the home position.
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Fig. 11.9 The Rover I, equipped with the Eye-RIS 1.1 in a panoramic configuration and the hearing
board, performs an hearing and visual homing task. The robot is attracted by the cricket calling
song but when the battery level is dangerously low, the homing behaviour is triggered to find the
recharging station.

Fig. 11.10 Results of the hearing targeting and homing experiment.

When the homing procedure is activated, the home image is compared with the
actual image. The direction to be followed is obtained using a gradient-based algo-
rithm that is developed inside the Eye-RIS v1.1 device and is based on the XOR
function (for details see [3]). Following the ascending direction of the XOR-based
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index, as shown in Fig. 11.10, the robot can find the recharging station position.
When the low level sensors detect black strips on the ground, the homing algorithm
is stopped.

Docking: the homing phase is followed by a docking procedure that is needed to
connect the recharging plates equipped on the robot with the station. Two black lines
on the ground indicate the position of the connectors in the base station. Using two
photo-diodes the robot can find the position of the lines and perform the docking. A
micro-switch detects the connection and actives the recharging circuits: at the end
of the process the battery level system stimulates the phonotaxis behaviour again.

Data acquired during an experiment are reported in Fig. 11.10. The homing
mechanism is here activated after two targets retrieving.

11.4.2 Reflex-based locomotion control with sensory fusion

Objectives: This demo aims at proving the reliability of the reflex-based Walknet
controller for Gregor III [7, 4]. Tactile sensors will be used for autonomous naviga-
tion and obstacle climbing.

Experimental set-up: The arena used for the experiments is the same of the pre-
vious demo with the inclusion of several obstacles that can be avoided or climbed.
The hexapod platform, Gregor III, is endowed with: distributed tactile sensors,
IPMC-based antennal sensor, distance sensors, an accelerometer, the hearing board
and the visual processor Eye-RIS v1.2.

Results:
The hexapod robot Gregor III has been designed as a moving laboratory used

to test the bio-inspired locomotion principles introduced in Chapter 2. The robot
equipped with a Li-Poly battery pack, can walk autonomously for about 30 minutes,
exchanging data with a remote workstation through a wireless communication link.

When the robot stability is compromised during an experiment, a recovery pro-
cedure is performed. Dangerous situations are detected using a posture controller
implemented through a three-axis accelerometer equipped on board.

Fig. 11.11 shows two different scenarios used to test the robot capabilities for
autonomous navigation in cluttered environments and obstacle climbing.

Further experiments have been performed on the Gregor III to deeply analyze
other sensing capabilities as for instance the auditory system. The cricket-inspired
hearing board, equipped on the robot, has been used to test the basic behaviour of
phonotaxis. Due to the complexity of the robot structure, an analysis of the distur-
bances introduced by the 20 servomotors (i.e. 16 for the legs and 4 for the antennae)
was carried on. The results, reported in Fig. 11.12, show how the sound recognition
system, even if affected by the noise introduced by motors, easily permits to identify
the sound source location.
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(a) (b)

Fig. 11.11 Walknet on Gregor III. (a) Obstacle climbing, (b) autonomous navigation in a cluttered
environment.

Fig. 11.12 Output of the hearing circuit, adopting a sample frequency of 500Hz and after a 1 Hz
low pass filter. The sound source diffusing the cricket calling song is initially located in front of
the robot and then is moved on the left, afterwards on the right and finally another time on the left
of the robot. The disturbance introduced by motors is evident but the source direction can be easily
distinguished.

11.4.3 Visual perception and target following

Objectives: This demo is focused on the application of visual perceptual algorithms
on Rover II.

Experimental set-up: Rover II and MiniHex are placed in a 3x3m2 arena filled
with different objects. The visual processor Eye-RIS v1.2 equipped on the rover is
used to detect the presence of the MiniHex and to follow it while moving in the
arena.

Results:
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This demo emphasizes the processing capabilities of the Eye-RIS v1.2 system.
The visual system, equipped on Rover II is able to process in real-time the im-
ages acquired by the robot aiming at recognizing the presence of the MiniHex robot
among different other objects visible in the scene (see Fig. 11.13).

Fig. 11.13 The Rover II recognizes and follows the MiniHex.

The designed visual algorithm is based on a sequence of operators that deeply
exploit the parallel processing capabilities of the system. In Fig. 11.14, the output of
each step executed within the interframe rate (about 30ms) is given. A gaussian filter
together with some MAC operations is applied to the acquired image to increase the
contrast in order to easily identify the different objects in the scene. A dynamic
threshold is then used to eliminate the background from the image and a mask is
applied to leave out the edge from the processing avoiding to process objects that
are only partially seen in the acquired image. Templates for erosion and dilation
are successively applied to filter noise and fill holes creating well defined blobs. The
position of each blob is then obtained by using the centroid operator. The dimensions
of the blobs can be also found tracing horizontal and vertical lines starting from
the centroid, making a logical operator with the output of the erosion and dilation
step, and finally counting the number of pixels. The ratio between the horizontal
and vertical dimension of each object is then used as a characteristic feature to
identify the MiniHex robot in the scene. The addition of further filtering functions
can enhance the detection of the detection of the MiniHex structure among different
kinds of objects.
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Fig. 11.14 Image processing on Eye-RIS 1.2.

11.4.4 Reflex-based navigation based on WCC

Objectives: A chaotic system is applied to navigation control in a roving robot. The
reflexive strategy, based on the weak chaos control technique (WCC), is compared
with other standard methods like the potential field.

Experimental set-up: The experimental platform is constituted by the SPARK
board that implements the navigation algorithm, a mobile robot and a wireless com-
munication system. A computer can be used to make a backup of the data for a post
process analysis. See reference [5] for details on the implementation aspects. Rover
I, equipped with four distance sensors, is used in these experiments. The aim is to
underline the obstacle avoidance and exploration capabilities of the roving robot.
For these reasons, different types of arenas have been considered.

Results:
The robot sensory system, that represents the input of the control system, is di-

rectly linked to the cycle used to enslave the chaotic system as discussed in Chapter
6.

Considering the sensor positions and orientations (Fig. 11.15), sensor Si is asso-
ciated to the reference cycle Re fi. Sensors S3 and S4 have been configured in order
to have a limited activation range with respect to the others. In this way the robot
could pass through narrow spaces.

The NiosII microprocessor is devoted to the execution of the deterministic nav-
igation algorithm and to the supervision of the activity of the VHDL entity imple-
menting the weak chaos control. The WCC process lasts about 2.8 ms and the whole
control algorithm running on NiosII about 80 ms.

An experiment in which the robot faces with a complex environment is shown
in Fig. 11.16 together with the corresponding evolution of the controlled multiscroll
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Fig. 11.15 Reference cycles representing the sensors of the robot.

system. Fig. 11.16 (a) and Fig. 11.16 (b) show a sensor output; a high value means
a low distance from an obstacle. The sample time is about 0.350 s. In Fig. 11.16 (c)
the robot senses an obstacle on the right side; both sensors S1 and S4 are activated
but in a different way: the control gain associated with S4 is higher than the other
gain. Therefore, the resulting cycle is placed between Ref1 and Ref4 but closer to
Ref4 (Fig. 11.16 (d)). In this case the robot turns in the opposite direction, and
the speed and rotation angle depend on the characteristics of the emerged cycle.
Subsequently, the sensors do not see any obstacle (Fig. 11.16 (e)), so the multiscroll
system shows a chaotic behavior (Fig. 11.16 (f)) and the robot continues to explore
the environment, moving with constant speed and without modifying its orientation.
In the last picture, Fig. 11.16 (g), only S1 sensor is slightly activated, so the emerged
cycle is placed on the reference Ref1 although a small control gain is used (Fig.
11.16 (h)).

Another experiment, whose video is reported in [8], shows the robot in an arena.
It continuously explores the environment until it founds an exit.

As performed for the simulated robot, also with the real one we made a series
of tests in two different environments (Fig. 11.17). Five experiments for each arena
have been carried out placing the robot in a random initial position. An example
of the trajectory followed in each environment by the robot controlled through the
WCC f method is shown in Fig. 11.17.

In each experiment the robot explores the environment for 7 minutes. The be-
haviour of the robot has been recorded through a video camera. A movie, has been
used to extract the robot trajectory and to evaluate the explored area. The results
obtained in the two arenas are shown in Fig. 11.18. In this case the WCC f algorithm
was selected to be experimentally shown. From the analysis of Fig. 11.18 the capa-
bility of the algorithm to densely explore the environment in a few minutes can be
appreciated.
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Fig. 11.16 Screen shoots of the robot during the exploration of an unknown environment and the
evolution of the controlled multiscroll system. (a)(b) Sensory signals acquired during the exper-
iment with a sample time of about 0.350 s; the acquired infrared sensor output reported on the
y-axis goes from 0 to 70 that correspond to a distance from 80 cm to 25 cm. (c)(d) More than one
sensor is concurrently active. (e)(f) No obstacle is considered relevant for the robot movement.
(g)(h) The right sensor (S3) detects an obstacle.
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(a) (b)

Fig. 11.17 Environments used to evaluate the performance of the proposed architecture controlling
a roving robot. The dimensions of both arenas are 10x10 robot units. An example of the trajectory
followed by the robot controlled through the WCC f algorithm is shown.
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Fig. 11.18 Area explored for the environments shown in Fig. 11.17 (a) and (b). The arena whose
dimension is 10x10 robot units, has been divided into locations of 1x1 robot units. The experiment
time is 420s and the mean value of area explored, mediated over 5 experiments, calculated with
time windows of 30s, is indicated. The bars show the minimum and maximum value.

11.4.5 Learning anticipation via spiking networks

Objectives: A roving robot is engaged in learning how to deal with higher level
sensors by using, as teaching signals, those coming from low level sensors. The
learning paradigm used is the Spike Timing Dependent Plasticity (STDP).

Experimental set-up: Rover I is equipped with the Eye-RIS v1.1 in frontal con-
figuration, distance sensors and low level target sensors. The arena contains obsta-
cles and two black circles on the ground that are used as targets.

Results:
The problem of correlation among different sensory stimuli and the possibility

to anticipate events has been discussed in Chapter 6. The control architecture, based
on a spiking network and implemented on the SPARK hardware, is here applied to
Rover I.
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The results that we are here reporting demonstrate how the robot is able:

• to learn distance sensors based on information coming from contact sensors (here
simulated using short range sensors), that represent unconditioned stimuli;

• to learn visual qualities related to an object and correlating them to information
related to a target sensor. In our demo the target sensor is a light sensor, posi-
tioned in the bottom part of the robot, facing the ground, while the conditioned
sensor is a visual one (the Eye-RIS v1.2 was used).

Fig. 11.19 Trajectories before and after learning with Rover I.

In Fig. 11.19, the trajectory followed by the robot at the beginning and after 30 min-
utes of learning is reported. As can be easily seen, the robot learnt through its basic
behaviours (i.e. collision reaction and low level target attraction) how to deal with
other more complex stimuli as the visual one, in order to improve its capabilities.
The improvement is quantitatively summarized in Fig. 11.20 in which the decre-
ment of the number of bumps and the increment in terms of number of targets found
during the learning phase is shown.

11.4.6 Landmark navigation

Objectives: The focus of this demo is to outline the robot capability to learn to dis-
criminate between relevant and useless pictures in the arena. The relevant pictures
can work as landmarks for homing purpose. Once learned the landmarks, homing
takes place exploiting the MMC recurrent network, even in front of partially ob-
scured landmarks.

Experimental set-up: Rover II is equipped with the Eye-RIS v1.2, distance sen-
sors and low level target sensors. The arena contains a target (i.e. nest) and five
different possible landmarks (i.e. black picture frame with objects inside, attached
to the walls).
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Fig. 11.20 Learning obstacle avoidance and target retrieving through STDP. (a) Number of bumps
occurred in time windows of 100 steps, (b) number of targets found in time windows of 200 steps.

Results:
The landmark navigation algorithm, as discussed in Chapter 6, is characterized

by two distinct phases.
Phase I: Landmark identification
In this phase, the roving robot randomly explores the arena filled with different

types of visual cues. At each step the robot acquires information about the presence
of different visual cues, provided by the Eye-RIS v1.2. The robot is also able to
detect the presence of the nest only within its proximity. The most reliable visual
cues (three in our demo) will have, at the end of the learning phase, the highest
values for their synaptic weights (through STDP learning), and will be selected
as landmarks for the next phase. The arena used for the experiments is shown in
Fig. 11.21.

Fig. 11.21 Environment used for landmark navigation.

Phase II: Landmark navigation
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In this phase the roving robot, placed on the nest position, acquires, via the Eye-
RIS v1.2 and a compass sensor, information about the three most reliable landmarks,
discovered in the previous phase, in order to build a map of the geometrical rela-
tionships between landmarks and nest. The comparison between the real map and
the map generated by the algorithm is shown in Fig. 11.22 and relevant data are
summarized in Table 11.1. The error due to measurement noise (in particular on the
compass sensor) is not a problem for the navigation algorithm, thanks to the filtering
capabilities of the RNN structure.

(a) (b)

Fig. 11.22 Map reconstruction for landmark navigation. (a) real map, (b) map generated using
sensory data acquired through a compass sensor and the Eye-RIS v1.2 visual system.

Table 11.1 Comparison between the real map and the map estimated through data acquired by
using compass sensor and visual system. Angles are calculated in degrees with respect to the south
direction whereas distance is in cm.

Real Estimated
Landmark Dist Ph X Y Dist Ph X Y

L1 260 147 251 67 264 165 222 142
L2 170 -128 109 -130 164 -130 101 -129
L3 130 -111 44 -122 120 -110 44 -112

After that, we let the robot forage for some steps and, once it needs to come back
to the nest, it turns around looking for a landmark. The information (distance and
angle) of the relative position between robot and landmark is acquired via the visual
system and enters in the RNN. The RNN output is a vector which is translated in
a motor command. After some iterations, the rover will reach the nest position (see
Fig. 11.23).
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Fig. 11.23 Trajectory followed by the robot guided by the reliable landmarks.

11.4.7 Turing Pattern Approach to perception

Objectives: The roving robot is able to autonomously learn navigation strategies,
through the emergence of Turing Pattern in the SPARK hardware. The perceptual
model shapes, through learning, the basins of attraction of each pattern to account
for the environmental needs.

Experimental set-up: Rover I is equipped with distance sensors and a compass
sensor. The perceptual core was designed in VHDL and implemented in the SPARK
board.

Results:
The cognitive architecture based on the Turing Pattern Approach (TPA) has been

already discussed in Chapter 7. One of the key point of this control architecture con-
sists in the hardware implementation of the whole sensing-perception-action loop.
Fig. 11.24 shows the hardware scheme. The perceptual core, dedicated to the Turing
patterns generation, has been completely developed in VDHL, whereas the action
system together with the interface with the Rover has been realized by using the
Nios II soft-core microprocessor (i.e. programmed in C++ language).

The low level hardware implementation of the perceptual core represents the final
result of an optimization process. The first implementation step was devoted to val-
idate the correctness of the algorithm; to do that on the Spark board, the Nios II de-
velopment environment has been chosen. The results were good in term of hardware
resources needed, but not feasible for real-time application due to a computational
time of about 90 seconds. To improve this results, custom instructions (i.e. dedi-
cated hardware modules for floating point operations) were introduced in the code
obtaining a decrement of about 50% with respect to the standard Nios code. Aim-
ing at reach a control loop time under one second (i.e. orders of magnitude under
the obtained time), a VHDL implementation was taken into consideration. The final
hardware design is able to elaborate Turing Patterns in no more than 98 ms without
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Fig. 11.24 Control scheme for the Turing Pattern Approach.

Fig. 11.25 Performances of different TPA implementations on the SPARK board.

exceeding in resources needed, that are under the 25% of the total. A comparison
between the different implementation strategies is reported in Fig. 11.25.

In order to show the performance of the roving robot controlled through the TPA
implemented on the SPARK board, the rover was placed in a arena whose dimen-
sions are 3x3 m2, filled with 3 obstacles in addition to the walls. The mission as-
signed to the robot consists into follow a target direction avoiding obstacles.

Fig. 26(a) shows the cumulative number of new patterns emerging during the
learning phase. It is evident how the total number of emerged patterns is constant
after about 800 learning cycles. In the experiment here reported, the robot can use
about 30 different patterns to specialize its behavior depending on the environment
conditions. All the possible actions, that the robot can perform at the end of the
learning phase, are shown in Fig. 26(b).

An example of the robot behavior is shown in Fig. 11.27 in which the trajec-
tory followed by the roving robot is reported together with the different Turing pat-
terns that constitute the specific internal representations of the robot surroundings
as learned during the learning phase.
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(a) (b)

Fig. 11.26 Experimental results for TPA. (a) Cumulative number of new patterns that emerge
during learning. (b) Distribution of robot actions obtained at the end of the learning phase.

Fig. 11.27 Trajectory followed in heading the target direction, avoiding walls and obstacles. The
robot navigation is guided by the emerging patterns.
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Finally, Fig. 11.28 shows all the Turing patterns used in the previous trajectory,
reporting for each pattern the number of occurrences and the associated action.

Fig. 11.28 Number of occurrences for each Turing pattern in the previously shown trajectory. The
action, in term of turning angle, associated with each pattern are also reported in radians.

11.4.8 Representation layer for Behaviour Modulation

Objectives: Here Turing Patterns are used to provide no longer a single action at
the output stage, but to modulate the basic behavior responses in the pre-motor area.
A roving robot will be used as a demonstrator of the learning phase executed on the
PC.

Experimental set-up: Rover II is equipped with distance sensors, a compass
sensor and the hearing board. The emulated lower level basic behaviors are:

• phonotaxis;
• optomotor reflex;
• obstacle avoidance reflex.

Results:
The experiments have been carried out within a 3×3 m2 arena where two obsta-

cles and a sound source have been placed (Fig. 11.29). In the experiments, we test
the architecture with the learned modulation parameters compared with the case of
fixed modulation. For each case, we let the robot perform three trials starting from
the same position. Fig. 11.30 shows the trajectory followed in the best and in the
worst trial for the two cases under analysis, while Fig. 11.31 reports the path length
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(a) (b)

Fig. 11.29 (a) Experimental set-up (b) Rover II navigates in the arena.

for all the trials. As well as in the simulations reported in Chapter 7, in the pre-
sented experiments, the performance increase is evident in terms of path length to
reach the target and robustness of the behavior against noise sources introduced in
the environment. The behaviour robustness is confirmed by the low variance in the
path length along the different trials.

Multimedia material, including tests in very noisy and dynamically changing
environments, is available in [8].

11.5 Conclusion

The emergence of cognitive capabilities in artificial agents is one of the big chal-
lenges of our decades. Different directions are currently followed by researchers
trying to develop artificial cognitive agents.

This chapter gives a contribution to this research activity proposing a series of
experiments that underline some of the potential applications of the SPARK archi-
tecture. These results do not represent the end of a path but just the beginning of an
activity devoted to improve the preliminary results here proposed to further gener-
alize the application capabilities and its fields of application.

Acknowledgements Authors acknowledge the support of STMicroelectronics for supplying tech-
nical help, microcontrollers and boards useful for the realization of Rover II.
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Fig. 11.30 Best and worst trial in the case of learned (a−b) and constant (c−d) modulation.

Fig. 11.31 Path length for all the experiments with the roving robot.
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