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Abstract. In this contribution a survey on a novel approach to locomotion and perception in 
biologically inspired robots is presented. The basic electronic architecture for modeling and 
implementing nonlinear dynamics involved in motion and perceptual control of the robot is the 
Cellular nonlinear network paradigm. It is shown how this continuous time lattice of neural-like 
circuits can generate suitable and real-time dynamics for efficient control of multi-actuators moving 
machines, and also to create the basis for a perceptual control of their behaviors.  

Introduction 

The challenge to conceive, design and build neuro-inspired machines, requires a deep scan into 
different disciplines, including Neuroscience, Artificial Intelligence, Biorobotics, Dynamical 
Systems Theory and Electronics. New types of moving machines should be more closely related to 
biological rules, not discarding real implementation issues. The recipe has to include 
neurobiological paradigms as well as behavioral aspects from one hand, and new circuit paradigms 
from the other hand. These latter should be capable of controlling in real time robots with an ever 
increasing level of autonomy, adaptability and intelligence.  
In addition, Biorobotics has a lot to share with Biomimetics[1-2], i.e. with the design of machines 
mimicking the structural aspects of animals. In our view, a biorobot, like the inspiring living being, 
is a Complex System, i.e. a system made up of a large number of sensing, processing and actuating 
units mutually interacting, in such a way as to show the emergence of highly organised yet adaptive 
spatial-temporal dynamics. The smooth movements of a galloping horse are only the last, visible 
stage of an extremely complex phenomenon, where a pre-specified locomotion pattern, imposed at 
the highest level of the brain under motivational needs, is transferred to the lower levels of the 
neural assemblies of motor neurons, that implement the locomotion program. This represents an 
example of the so-called Central Pattern Generator (CPG), a neurobiological paradigm for 
locomotion generation and control, from molluscs to man [3], whose schematic representation is 
given in Fig. 1. In this architecture, sensory feedback is not essential for the execution of a single 
locomotion program, even if its use contributes to finely adapt actions to the environment. The CPG 
is therefore another example of complex system, and motion is its visible solution. With these 
considerations, our purpose was to face with the problem of locomotion generation and control 
through modelling the complex spatial temporal dynamics, shown by CPGs, in neuromorphic 
systems, joining them to a complex actuator structure, like a biorobot. The circuits taken into 
account to act as paradigms for this new kind of Robotics are also based on the theory of complex 
nonlinear dynamical systems: they are the so-called Cellular Nonlinear Networks (CNNs) [4]. 



 
Fig.1 The Central Pattern Generator Scheme 

 
The same architecture, able to generate locomotion patterns, was subsequently found able to 
generate also perceptual schemes for guiding motion activities towards the fulfillment of specific 
mission. In this paper these research lines are summarized, leaving details to the referenced 
manuscript. 

Cellular Nonlinear Networks for locomotion  

CNNs were introduced by Leon Chua in 1988, as large arrays of locally connected simple analog 
nonlinear cells, with the capability of being digitally programmable through the modulation of the 
local connections among the cells, under the form of Cloning Templates [5]. A schematic view of 
CNNs is reported in Fig. 2. In particular the state variable of each cell depends on the input, output 
and state values of the neighboring cells by means of the voltage controlled current sources outlined 
in the figure. Moreover, the output nonlinearity is very simple, a saturation function. In Fig. 2 the 
relations among the Cloning templates A, B, C, and the circuit parameters are also outlined. Finally, 
a VLSI implementation of the CNN architecture is presented. Nowadays technology allows to 
embed inside a single analog, digitally programmable chip, a number of 176 by 144 analog cells, 
able to realize a lot of functions in real time, assured by the analog implementation [6].  
 

 
Fig.2 The Cellular Nonlinear Network scheme and main characteristics 



                     
Fig. 3 Rexabot II       Fig. 4 Gregor I 

 
Although being introduced at the main scope to act as real time image processors/computers, CNNs 
subsequently acquired the role of paradigms for the study of complex dynamics, including spatial 
temporal chaos and self-organization [4]. These lattices of simple non linear units have the property 
that the solution set shown by the network is much richer than that one shown by the dynamics 
within single units. As a consequence, new solutions “emerge”, which are often characterized by 
order and harmony. Moreover here computation is rather “wave based”, than “bit based” [7]. In this 
direction, these continuous time spatial temporal dynamical circuits and systems are the 
paradigmatic mirror of biological neural computation. CNNs, thanks to their programmability, 
allow to design and build space distributed networks of nonlinear systems (neurons) able to process 
in real time analog, space-distributed signal flows. Second order, spiking cells were designed and 
implemented by using continuous time nonlinear circuits, whereas diffusion-like synapses were 
chosen for the connections among the cells. The CNN designed belonged to the class of Reaction-
Diffusion CNNs, able to generate particular traveling waves along the neurons of the CNN lattice: 
the so-called Autowave fronts [8]. These autonomous fronts were shown to possess the same 
qualitative characteristics as the signals in neural fibers. The design started from the dynamics of 
the single cell in the CNN array. This cell was designed so as to show, in the phase plane, a slow-
fast, spiking  limit cycle, typical of excitable media, like the neural one. The design was further 
tested against noise tolerance and was found robust enough to allow first a discrete component 
realization, and finally a VLSI implementation. Autowave fronts travelling through CNN neurons 
are extremely flexible: in fact their path along the cells can be efficiently controlled by using an 
input mask, i.e. a sensory input. The final aspect was to design a suitable functional transformation 
to realise a correspondence among the state variable of the CNN neural cells and the joint variables 
of the legs in the robot. This task was successfully achieved, realising multi joint biorobots where 
locomotion was the visible solution of the neural dynamics designed and realized at the level of the 
neural circuit of the controller (RD-CNN). Fig.3 shows REXABOT II, the first autonomous 
hexapod where all components are analog, to demonstrate that analog flows can do efficient 
computations to perform  basic locomotion control patterns. The robot can control his locomotion 
patterns against the high degree of noise contained in the discrete component realization of the 
neural cells, hosted in the upper back part of the robot. The robot shows also a high graceful 
degradation level, since, cutting a cells out of the neural network, locomotion control can continue, 
even if  slightly degraded, thanks to the re-synchronization of the neural array.   
Once testing the robustness of this analog implementation of the CPG on arrays of RD-CNNs, an 
analog VLSI circuit was designed, realized and tested [9]. Fig.4 reports the first prototype of a 
cockroach inspired robot, controlled by the CNN based analog chip. The structure was re-designed 
to as to have higher dexterity in the front and mid legs, while leaving to the hind legs  the role of 
generating a high forward thrust.  The peculiarity of the CNN CPG chip is the possibility, thanks to 
a switched capacitor implementation, to modulate, through an external signal, the oscillation 
frequency of the neurons inside the chip. This can allow to drive very different families of  



actuators, from (slow) servomotors to (fast) piezo actuators. Fig. 5 depicts the implementation of 
this strategy on  Rexaplif, an hexapod actuated by piezoelectric actuators driven by the same chip.  
 

        
Fig.5 Rexaplif     Fig.6 Lamprey robot 

 
 
The generality of the approach allows to drive, with the same chip, completely different types of  
robot architectures. In fact, almost all animals are driven by the CPG paradigm. As an example, the 
same chip is once again used to control swimming in a Lamprey-inspired robot (Fig.6). The chip is 
clearly visible within the head of the robot. Actuation is, in this case, realized by servomotors, even 
if different kinds of actuators were tested, among which shape memory alloys, or McKibben 
muscles [10]. The implementation of the CPG paradigm through the RD-CNN paradigm allows to 
implement different locomotion patterns by changing the network topology and therefore the 
connections between the cells and the robot actuators. Another efficient approach consists in pre-
designing a series of locomotion patterns by implementing a set of chemical-like synaptic 
connections among the neurons. In this latter case, the network topology remains the same, by a 
different set of template values is uploaded as a function of the particular locomotion pattern to be 
implemented into the robot. This last approach was called Multi-template approach, whose details 
are reported in [11]. 
Locomotion control of legged machines is a powerful technique, able to be simply and efficiently  
controlled. As an example, if we focus on the real time attitude control of a walking robot, with the 
aim to maintain a pre-specified roll and pitch reference in front of disturbance from the ground, this 
can be easily realized by a distributed  layer of simple controllers acting concurrently with the CNN 
generating the locomotion patterns [12].  Fig. 7 and Fig 8 depict one of the results of the application 
of the analog control law on Rexabot III, a 18 Dof hexapod.  
 

           
 Fig.7 Rexabot III: attitude control        Fig.8 Rexabot III: walking and attitude control 

 



The robot is able to maintain a given attitude, also while walking on very sloped grounds. Details 
on the design of the attitude control law and circuit are reported in [12].  Another important issue of 
this implementation is the distributed character of the control law. In fact, the reference signal, for 
any given single leg controller, is the roll and pitch signal for all the structure. As a consequence, 
the control action is active in front of any error, whatever leg is out of reference. The control law 
acts of the neural controller so that all the structure reacts in such a way as to reach a zero error 
condition. In such a distributed actuator network, this strategy greatly helps to escape from 
unforeseen situations. If for example, due to ground disturbance, one of Rexabot III legs is over 
loaded, and so attitude is no longer satisfied, the reference error propagation among the leg 
controllers guides the dynamics of all the CNN cells in order to solve the problem. This is a clear 
example of self organization and emergence of new solutions, typical of complex dynamics. What 
discussed is presented in Fig. 9, through a series of snapshots taken from a video.  

 

             
(a)       (b) 

             
 (c)        (d) 

Fig.9: (a) Rexabot III front right leg is overloaded; (b)-(c)-(d) emergence of a recovery strategy coming from the 
integration among the CNN locomotion controller and the analog attitude controller. 
 
 
Cellular Nonlinear Networks: from locomotion toward Perception 
 
Drawing inspiration from perceptual mechanisms of biological systems, and relying once again on 
the RD-CNN paradigm, a bio-inspired framework for the sensing-perception-action cycle, was 
recently designed and implemented to be applied, as a first simple example, to the real time control 
of robot navigation, where the robot task is to move in an cluttered environment, trying to avoid 
randomly placed obstacles and to reach targets. 
Such a framework can be divided into functional blocks (see Fig. 10). The starting point is a 
sensing block, which receives sensorial stimuli from the environment, dynamically clusters and 
uses them as initial conditions for a two-layer RD-CNN, which is the core of perception. The CNN 



parameters are chosen appropriately to generate the so-called Turing patterns [13], which are here 
exploited and used to form an internal state representation.  
 
 

 
 

Fig.10: Scheme of the perceptual framework used for navigation control. The framework is divided into functional 
blocks, starting from the sensing layer to the robot motor control stage. The RD CNN  extracts the needed information 
from sensors creating an internal representation through Turing Patterns generated. The learning process is guided by a 
motivation assigned to the robot. 
 
The representation of perceptual states under the form of Turing Patterns in CNNs was a working 
hypothesis, inspired by works in Neurophysiology that report on the presence of non-spiking 
neurons in the cerebral ganglia of some mollusks whose high or low level plateau potentials 
maintain a specified pattern in front of desired behaviors [3].  
Characteristics of the whole perceptual process are: 

• ability to represent different environment situations as internal states; 
• ability to associate a specific action to each internal state; 
• ability to plastically modify these associations thanks to the experience. 

 
Internal states (i.e. Turing Patterns) are the core of the perceptual process since they link sensing to 
action. They, on the one hand, are the result of the dynamic processing of incoming input stimuli 
and, on the other hand, represent different ways to interact with the environment. To meet these 
tasks, we use a CNN [13] as dynamical system and consider Turing patterns as internal states. In 
particular we use a two-layer four by four Reaction-Diffusion-CNN (with zero-flux boundary 
conditions) with appropriate parameters to generate Turing patterns [15]. 
Each pattern is associated with an action by means of a simple reinforcement learning. To perform 
its task, the robot is provided with no a priori knowledge and learns by means of trial and error, 
according to the experiments on Classical and Operant Conditioning. 
The learning is implemented by two mechanisms: an unsupervised learning acts at the sensing 
block allowing the system to modulate the basins of attraction of the Turing patterns, while a simple 
reward-based reinforcement learning is devoted to build up the association between Turing patterns 
and actions. The latter is based on a simplified version of the traditional Motor Map algorithm see 
[14] and appendix therein. 
The main differences of our work from that one reported in literature [16] is the introduction of 
dynamics in the system implementing the sensing-perception-action loop. 
Dynamical systems have been successfully used in bio-inspired locomotion control of walking 
robots, as shown above. Nonlinear dynamical systems are used in place of a static neural network, 
for reasons of biological plausibility, versatility and much improved plasticity. This latter 
characteristics is obtained by imposing that the set of actions to be performed by the robot is not a 



priori established, as in [16], but is the result of a simple, but effective learning mechanism, which 
improves the plasticity of the methodology. 
The sensing-perception-action loop is modelled by using nonlinear dynamical systems like CNNs, 
exploiting their real-time implementation. The unsupervised learning algorithm has been introduced 
between the input sensors and the RD-CNN for the dynamical modulation of basins of attraction 
associated with Turing patterns. Moreover we have designed and used an oversimplified version of 
the MM, and added a contextual layer to support higher level navigation strategies. 
In the case at hand, i.e. navigation in unstructured environment, the navigation task in a physical 
space is mirrored into a navigation, in the robot “brain”, through a sequence of basins of attraction, 
each one corresponding to a particular behavior that has to be performed by the robot, in order to 
fulfill its mission.  
Fig. 11 depicts a typical simulation result, while Fig, 12 reports an experimental phase, where the 
rover navigation is controlled by the mirrored motion through Turing patterns. 
 

 
Fig. 11: Navigation through Turing patterns and associated actions in a simulated rover 

 

    
Fig.12: Two sequences of the robot navigation controlled by Turing Patterns, shown in the Laptop frame. 

 
An interesting fact is that the cell structure generating wave fronts for locomotion control is 
structurally equal to that one generating Turing patterns. The two dynamics are obtained simply by 
a parameter modulation, in strict analogy with biological neurons, which attain different dynamics, 
although being structurally equivalent. The perceptual architecture was implemented in an FPGA 
based board architecture for the sake of simplicity and possibility to optimise the structure, but in 
the near future it is envisaged to have the structure within a whole analog circuit, devoted to 
generate both the perceptual states and the low level locomotion commands for the robot actuators. 
The actual robot prototype where the perceptual control is being implemented and that host the 
FPGA based hardware is Gregor III, depicted in Fig.13. 



 
Fig.13: Gregor III: a cockroach  inspired robot used as test-bed for the designed cognitive architecture within the 
SPARK project. 
 
Gregor III is a new hexapod prototype, built to enhance the level of autonomy and dexterity with 
respect to the previous prototypes. It has a sprawled structure, very powerful hind legs (2 DoF each) 
used to provide a great push and support batteries and control boards; mid and front legs have 3 Dof 
each to enhance dexterity. The robot can implement both the CPG locomotion control and a 
decentralized motion control, inspired to the stick insect. To implement this new type of 
locomotion, Gregor III was endowed with touch and distance sensors, closed in loop with the 
network controlling each leg, which, in quite independent on the other ones, except for some local 
rules, to maintain the robot stability during walking.  
This robust prototype, together with other legged and wheeled machines is currently being used 
within the EU funded project SPARK II, deriving to a former EU project SPARK, whose aim is to 
design and implement new insect-inspired architectures for action-oriented perception in bio robots 
[17-18].  
 
Conclusions 
In this manuscript a survey on a methodology for the biologically inspired control of locomotion in 
multi actuated machines in introduced. The strategy used CNN structures as basic paradigms for the 
emergence of locomotion patterns as steady state solution arising from the self organization of 
complex systems, like lattices of neurons,  mainly locally connected, i.e. a CNN. The methodology, 
along the course of the last years, was assessed and subsequently implemented  both in an analog, 
discrete component architecture, and in a VLSI chip. The chip was embedded into a number of 
moving, walking and swimming machines, showing its suitability to control in real time multi-
actuated robots.  
Subsequently, an approach to robot perception, inspired both by Neurophysiology and by Complex 
Dynamics was introduced. The formulated hypothesis considers the perception-action loop realized, 
at the high level of the brain, through a pattern forming process, within neuron lattices, where 
perceptual stated emerge as steady state membrane potential solutions as a function of the 
environment stimuli. The neuron lattice, once again formulated through the CNN paradigm, acts as 
a place where a progressive structuring of the environment information takes place at the aim to 
learn an abstract and concise representation of the environment, whose result is a pattern, i.e. a code 
within a CNN network. An action, associated through a simple reward function, is then applied to 
let the robot incrementally learn to solve a given task. In the mean time, a simple learning at the 
layer connecting the sensor signals to the CNN initial condition, act in such a way as to force all the 
set of environment information leading to the same action  to belong to the same basin of attraction 
of the emerging pattern associated to that specific action.  



The methodology, recently introduced, is currently being further assessed and enriched with 
information coming from Neurobiology about details of insect brain architecture and perceptual 
function, in order to arrive, in the near future to the introduction of an insect brain computational 
model applied to task solving in biorobots.  
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