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Abstract

In this paper a new technique based on thesensing-perception-action loopis presented. The

paper starts from exploiting the successful implementation of the basic idea that perceptual states

can be embedded into chaotic attractors whose dynamical evolution depends on sensorial stimuli.

In this way, it can be possible to encode an abstract and concise representation of the environment

into the chaotic dynamics. This representation has to be suitably linked to an action, executed by

the robot, to fulfill an assigned mission. This task is addressed here: the perception-action loop

is closed by introducing a simple unsupervised learning stage, implemented via a bio-inspired

structure based on the Motor Map paradigm. In this way, perceptual meanings, useful for solving

a given task, can be autonomously learned, exploiting the richness of environmental informa-

tion embedded into the controlled chaotic dynamics. The presented framework has been tested

on a simulated robot and the performance have been successfully compared with other tradi-

tional navigation control paradigms. Moreover an FPGA-based implementation of the proposed

architecture is briefly outlined and preliminary experimental results on a roving robot are also

reported.

Keywords Multi-scroll chaotic system, Sensing-perception-action loop, reflexive behaviours,

Motor Maps, robot navigation.

Recently a new family of chaotic systems, generating Multiscroll attractors, was introduced.

This type of chaotic dynamics was taken into consideration by the authors of this paper to

model perception for action mechanisms, with application to autonomous mobile robot con-

trol. In this paper the authors complete the methodology by adding an unsupervised learning

structure to the controlled multiscroll system. In this way the robot autonomously learns to

answer, to a given environmental stimulus set, with that action which contributes to increase

an a priori fixed reward function, representing the robot assigned mission. The simple learning

strategy adopted is suitable to be implemented in hardware for real time working together with

the already implemented multiscroll system.
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1 Introduction

After the introduction of Multiscroll chaotic systems [1], several circuit solutions were proposed,

among which [2], for a real time implementation. In particular, the potential role of multiscroll

dynamics in perception was envisaged in [2]. In fact, in more recent works [3, 4, 5], a bio-inspired

approach based on a new control technique, applied to multiscroll systems, was introduced to deal

with navigation control in simulated and real environments. These works are based on a paradigm

which considers perception no longer as a stand-alone process, but as a holistic and synergetic one,

tightly connected to the motor and cognitive system [6]. Perception is now considered as a process

indivisible from action: behavioral needs provide the context for the perceptual process, which, in

turn, works out the information required for motion control. In this work the perceptual system has

been realized by means of chaotic dynamical systems controlled through a new technique called

Weak Chaos Control(WCC).

WCC technique allows to create perceptual states that can be managed by the control system

because directly related to the concept of embodiment and situatedness [7]. The biological principles

that inspired the proposed approach are based on Freeman’s theories. His approach recognizes the

existence of internal (mental) representation [8, 12]. Cerebral cortex processes information coming

from objects identified in the environment from receptors by enrolling dedicated neural assemblies.

These are nonlinear dynamical coupled systems, whose collective dynamics constitutes the mental

representation of the stimulus. Freeman and co-workers, in their extensive experimental studies

on the dynamics of sensory processing in animals [9, 10, 11, 12], conceive a dynamical theory of

perception. Through the electroencephalogram (EEG), Freeman evaluated the action potentials in the

olfactory bulb and he noticed that the potential waves showed a typical chaotic behavior. So he came

to the conclusion that an internal mental representation (cerebral pattern) of a stimulus is the result

of a chaotic dynamics in the sensory cortex in cooperation with the limbic system that implements

the supporting processes of intention and attention [12].

The application of chaotic models as basic blocks to reproduce adaptive behaviours [13, 14, 15]

is an interesting aspect of the current research activity on this field. The idea is that chaos provides
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the right properties in term of stability and flexibility, needed by systems that evolve among different

cognitive states. In particular, perceptual systems dynamically migrate among different attractors

that represent the meaning of the sensory stimuli coming from the environment.

Moreover other studies consider the role of noise as an added value to reactive systems that

otherwise could not be able to escape from deadlock situations produced by local minima [16].

Skarda and Freeman [13] have investigated the role of chaos in the formation of perceptual mean-

ings. According to their works, chaotic dynamics can constitute the normal background activity of

neural systems. If the system (i.e. neuronal ensembles) is perturbed by sensory inputs, the result is

a transition into a new attractor that represents the meaning of the sensory input, depending on the

state of the system and its environment. The advantage of a chaotic background activity with respect

to noise is that noise cannot be easily controlled (e.g. stopped or started), whereas a chaotic dy-

namic can be easily enslaved and suppressed switching among different attractors. Therefore chaotic

dynamics can further improve reactive system capabilities, in fact chaotic systems generate a wide

variety of attractors that can be controlled guiding the transit from one to another, similarly to the

emergence of adaptive behaviours in living beings.

Freeman’s studies leaded to a model, called K-sets, of the chaotic dynamics observed in the

cortical olfactory system. This model has been used as dynamic memory, for robust classification

and navigation control of roving robots [17, 10, 18, 19].

The architecture here proposed, taking into consideration the relevant principles previously un-

derlined, is based on the control of chaotic dynamics, to learn adaptive behaviours in roving robots.

The main aim is to formalize a new method of chaos control applied to solve problems of perceptual

state formation.

The WCC approach following these guidelines uses a chaos control technique, applied to a mul-

tiscroll chaotic system [1]. Therefore, the WCC is a general technique that can be applied to several

chaotic system [2, 20]. All sensory signals are mapped as different potential reference dynamics used

to control the chaotic system. This creates associations among sensor information and a particular

area located within the multiscroll phase plane, in a way that reflects the topological position of the

robot within the sensed environment.
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The multiscroll chaotic system has been chosen instead of other regular chaotic systems to exploit

its modularity in the design of the multiscroll attractors in fact, the system can be designed depending

on the robot embodiment. Each scroll can be related to the presence of one or more active sensors; in

this way motion control can be used to improve the perceptual process by placing the robot sensors in

the most appropriate positions. This well refines the ability to select the most important information

discarding what is less useful for the given task.

The aim of this paper is to assess the WCC navigation technique performance presented in pre-

vious works [3, 4, 5] in relation to the problem of action-oriented perception.

In fact in the referred papers above, the controlled system dynamics was linked to a given robot

action using fixed rules, a priori selected by the designer. On the contrary a real perceptual architec-

ture should be able to autonomously associate, to a given environmental state, as recorded by sensors

the action that contributes to increase a given Reward. In this manuscript we address such an issue

by adding an associative learning layer (called in the followingAction Selection stage). Since as-

sociations are incrementally learned via feedback through the environment, as recorded by sensors,

placed in a given position in the considered robotic structure, this technique allows also to implic-

itly consider, within the robot control system, information about the robot structure and dimensions,

including the sensor position, thus situating the robot within the environment. The improvements

provided by the Action Selection layer are shown in several works [21, 22], in relation to different

applications.

As regards the type of learning used in theAction Selection stage, a fundamental issue is that,

given the high degree of information that the chaotic system can embed, in terms of sensor measures,

the task to be solved by the associative layers should be really simple. Candidate algorithms are

based on Reinforcement learning (RL): this is used to find how to map situations to actions, so as

to maximize a pre-defined reward signal. The system does not know which actions to take, but

instead it must discover which actions yield the best reward by trying them [36]. In the proposed

architecture, to close the loop, the perception-action link is plastically learned, introducing a simple

reward-based mechanism, derived by theMotor Map paradigm. It is inspired by the paradigm of

Kohonen Nets [23] and is able to plastically react to localized excitation by triggering a movement
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(like the motor cortex or the superior colliculus in the brain) [24]. The Motor Map paradigm has been

already successfully applied to solve navigation control problems [22, 25]. The proposed navigation

control technique, based on the action-oriented perception paradigm, has been tested in a simulation

environment and subsequently was implemented using a hardware platform.

In the next section we will describe the control architecture that reproduces the sensing-perception-

action loop. Section 3 is devoted to illustrate a case of study: the application of the control architec-

ture to a problem of autonomous navigation. Simulation results and comparisons with other tradi-

tional approaches are reported in section 4 whereas section 5 describes a hardware implementation

based on FPGA. Finally, in section 6 and 7 we will give some remarks and draw the conclusions.

2 WCC control architecture

The control architecture here proposed is a general framework designed to deal with action-oriented

perception mechanisms. The idea is that an agent with no a-priori knowledge except for its body

structure, can learn how to accomplish a given task performing the sensing-perception-action loop.

The architecture is general and can be used to control different kinds of agents (e.g. roving and

legged robots, robotic arms) that need to interact with an external environment.

In this work the whole control architecture is described from a general prospective and an appli-

cation in the case of autonomous roving robots dealing with basic navigation tasks is also reported

and compared with other, more traditional, solutions.

The overall architecture for action-oriented perception is shown in Fig. 1 where two main blocks

can be distinguished:

• the perceptual block, which creates an internal representation of the environment from the

sensory inputs;

• the action selection network, which learns a reward maximizing action at the motor layer.

The perceptual block is the unit where the agent creates an internal representation of the environ-

ment perceived through the distributed sensory system equipped on it. As discussed above, taking
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Figure 1: Control architecture.

inspiration from biological evidence, a chaotic dynamical system was adopted as an engine able to

generate emergent solutions thanks to the richness of different behaviours that can arise [13, 14].

The chaotic system is here used to create a meaning of the sensory input by means of a con-

trol technique that can easily allow to enslave and suppress the chaotic dynamic, switching among

different attractors.

For autonomous navigation in a roving robot, when no stimuli are perceived (i.e. there are no ac-

tive sensors) the multiscroll system evolves in a chaotic behavior and the robot continues to explore

the environment performing an action determined by the chaotic evolution of the multiscroll system.

When external stimuli are perceived, the controlled system converges to a cycle (i.e. a periodic pat-

tern) that depends on the contribution of active sensors through the control gains. The corresponding
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action will plastically depend on the characteristics of the cycle, as a result of the learning algorithm.

When the stimuli stop, the multiscroll evolves in a chaotic way again.

The learning mechanism is driven by a Reward Function (RF), designed on the basis of the

mission to be accomplished (in our case navigation). Each block is described in the following,

referring to Fig. 1.

2.1 Perceptual System

The core of this layer is the Weak Chaos Control method (WCC) [5]. The crucial advantage of

this approach is the possibility to create a compact representation of the input signals coming from

the environment that can be used for real time generation of suitable actions. This block emulates

the perceptual processes of the brain in which particular cerebral patterns emerge depending on the

perceived sensorial stimuli. To model this behavior a chaotic system, proposed by Chen [1], has been

used as a plastic layer in which perceptual states can emerge. The chaotic behavior of the Chen’s

multiscroll system can be enslaved to regular periodic patterns (i.e. emergence of perceptual states)

by using the sensory stimuli as reference control signals. The multiscroll system has been preferred

to a regular chaotic one because we need to map the agent embodiment in the system dynamics

and a very simple solution, that will be further discussed in the following sections, consists into a

topological distribution of the sensory inputs in the system phase plane. The Chen’s system can be

easily designed in order to increase the number and position of scrolls and this opportunity allows to

handle with a great number of distributed sensors.

The control mechanism has been realized via a feedback on the state variablesx andy controlled

in order to follow the reference cycles. The equations of the controlled multiscroll system can be

written as follows:
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



ẋ = y− d2
b f (x;k2;h2; p2,q2)+∑i Kxi(xmi −x)

ẏ = z+∑i Kyi(ymi −y)

ż=−ax−by−cz+d1 f (x;k1;h1; p1,q1)

+d2 f (y;k2;h2; p2,q2)

(1)

wherexmi andymi are the reference signals,Kxi andKyi are the control gains and the following

so-called saturated function seriesf (x;k;h; p,q) has been used:

f (x;k;h;p;q) =
q

∑
i=-p

fi(x;k;h) (2)

wherek > 0 is the slope of the saturated function,h > 2 is calledsaturated delay time, p andq

are positive integers, and

fi(x;k;h) =





2k if x > ih+1,

k(x− ih)+k if |x− ih| ≤ 1,

0 if x < ih−1

f−i(x;k;h) =





0 if x >−ih+1,

k(x+ ih)−k if |x+ ih| ≤ 1,

−2k if x <−ih−1

The parameters used in the following (a = b = c = d1 = d2 = 0.7, k1 = k2 = 50, h1 = h2 = 100,

p1 = p2 = 1, q1 = q2 = 2) permit to generate a 2-D5×5 grid of scroll attractors [3].

A key point of this approach is that the reference cycles distribution in the phase planex-y reflects

the topological distribution of the sensory information taking into account the agent embodiment.

Moreover, the sensor range depicts the current robot operating space, which is dynamically encoded

within the phase space of the multiscroll system. The control acts only on the two state variables

x andy and the link between reference signals and sensors is obtained though control gains. These
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control parameters are related to the amplitude of the sensory stimuli, so a regular periodic pattern

emerges as a function of the sensor readings [3, 5].

The different dynamics shown by the controlled system are depicted in Fig. 2 where three differ-

ent reference cycles are taken into account (i.e.Re fi). When the agent doesn’t perceive any stimulus,

the multiscroll system evolves chaotically (Fig. 2 (a)). When the control gains for theRe f2 are set to

Kx2 = Ky2 = 0.1, the chaotic evolution is confined in a part of the phase plane topologically related to

the stimulus (Fig. 2 (b)). Furthermore if the control gain grows reaching a valueKx2 = Ky2 = 2 (i.e.

the agent is giving more importance to the sensors related toRe f2), the chaotic dynamics collapses

to a cycle (Fig. 2 (c)). Finally when another stimulus is perceived concurrently, for instance the sen-

sor associated to theRe f3 is very active (Kx2 = Ky2 = 2 andKx3 = Ky3 = 15), the controlled system

dynamics is influenced accordingly (Fig. 2 (d)).

An important advantage given by the characteristic of the multiscroll system is the possibility to

extend the grid of scrolls in a third dimension adding another simple piecewise linear function as

described in [1]. This solution can be useful when the three-dimensional distribution of sensors in

the agent is important (e.g. in a multi-legged robot or in a robotic arm). In this condition the control

law can be easily extended to the state variablez.

In order to solve the robot navigation task, an action is performed by the robot according to the

characteristics of the emerged pattern.

Each cycle that emerges from the control process (i.e. perceptual state) can be identified through

its center position and shape. A code is then associated to each cycle and it is defined by the following

parameters:

• xq andyq: the center position in the phase planex−y;

• x̄q: maximum variation of the state variablex within the emerged cycle;

• ȳq: maximum variation of the state variabley within the emerged cycle;

whereq indicates the emerged cycle.
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(a) (b)

(c) (d)

Figure 2: Dynamic evolution of the controlled multiscroll system for different values of the control

gains. (a)Kx2 = Ky2 = 0; (b) Kx2 = Ky2 = 0.1; (c) Kx2 = Ky2 = 2; (d) Kx2 = Ky2 = 2 andKx3 = Ky3 = 15
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In this way, a few parameters provide an abstract and concise representation of the environment.

This solution has been demonstrated to fit in the application to robot navigation. Other parameters

could be taken into consideration to improve the representation process for more complex tasks.

In the application dealing with autonomous navigation, only contact, distance and target sensors

have been used, although other sensors could be included. Distance sensors have a visibility range

that describes the area where the robot is able to detect static and dynamic obstacles, while target

sensors return the target detecting angle with respect to the frontal axis of the robot.

2.2 Action Selection Layer

The perceptual pattern obtained through the WCC technique is then processed by the action selec-

tion block (see Fig. 1). This block establishes the association between the emerged cycle and the

consequent robot action. For navigation purposes, an action consists of two elements:

action= (module,phase) (3)

The module and phase of an action determine, respectively, the motion step and the rotation angle

to be performed by the robot. To perform this task, the Motor Map (MM) paradigm was employed.

MMs are suitable to control robot behaviours in an unknown environment because they are adaptive,

unsupervised structures and simple enough to allow a real time learning. The MM is composed by

two layers: one (V) devoted to the storage of input weights and another (U) devoted to the output

weights. This allows the map to perform tasks such as motor control. Formally, a MM can be defined

as an array of neurons mapping the space of the input patterns into the space of the output actions:

ϕ : V −→U (4)

The learning algorithm is the key point to obtain a spatial arrangement of both the input and

output weight values of the map. This is achieved by considering an extension of the Kohonen

algorithm. At each learning step, when a pattern is given as input, the winner neuron is identified:

this is the neuron which best matches the input pattern. Then, an update process of both the input and
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output weights for winner neuron and its neighbors is performed. The learning procedure is driven

by a reward function that is defined on the basis of the final aim of the control process [26]. A MM

although very efficient to be trained, could be difficult to be implemented in hardware because of

the high number of afferent and efferent weights. Since this work is oriented towards a hardware

implementation on real roving robot prototypes, a simplified version was adopted (for more details

see [22]). The first difference is that relationship of proximity is not considered among the neurons,

therefore, only the weights of the winner neuron are updated. Another and more important difference

is that the afferent layer is substituted by a pattern table. Each emerged cycle, identified by a code,

is stored in the pattern table (if it is not yet present) when the pattern emerges for the first time.

Each element in the pattern table contains the emerged cycle code and the number of iterations from

its last occurrence (defined asage). If the pattern table is full, the new element will overwrite the

one containing the code of the pattern least recently used (LRU), i.e. that one with the highestage

value. In the standard MM paradigm, the afferent layerV represents the actual state of the system:

in our application the pattern table performs the same function synthesizing the perception of the

environment. Therefore the winning neuron of the afferent layer is replaced by the elementq of

the pattern table which contains the last emerged cycle. Moreover the efferent (output) layer is now

constituted by two weights for each element of the pattern vector. The elementq is connected to the

weightswqm andwqp which represent respectively module and phase of the action associated with

the patternq (Aq). At each step, the robot does not perform the exact action suggested by the weights

of q (wqm andwqp), but the final action is:

Aq = (Aq(module),Aq(phase)) = (wqm+asqλ1,wqp+asqλ2) (5)

whereλ1 andλ2 are random variables uniformly distributed in the range[−1;1]. The parameter

asq limits the searching area. Every time the patternq emerges,asq is reduced to focus the action

search in a smaller range so to guarantee the convergence of the efferent weights. When there are

no inputs, the perceptual core of the robot (the multiscroll system) behaves chaotically. This implies

that there are no emerged cycles and no entries in the pattern table. In this case the robot explores the
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environment and its action depends on the position of the centroid of the chaotic dynamics shown by

the system during the simulation step. Of course the exploration phase can be performed also using

a forward motion, i.e, not considering the chaotic wandering.

The unsupervised learning mechanism that characterizes the MM algorithm, is based on a Reward

Function (RF). This is a fitness function and it is the unique information that allows to determine the

effectiveness of an action depending on the assigned task.

In a random foraging task, a suitable choice for the RF is:

RF =−∑
i

ki

D2
i

−hDDT −hA|φT | (6)

whereDi is the distance between the robot and the obstacle detected by the sensori, DT is the

target-robot distance,φT is the angle between the direction of the longitudinal axis of the robot

and the direction connecting robot and target, andki , hD andhA are appropriate positive constants

determined during the design phase [27, 28].

3 Application to robot navigation

To demonstrate the applicability of the control scheme introduced above with a moving agent, an

autonomous navigation task was taken into consideration.

The proposed framework has been firstly evaluated with a simulated roving robot and subse-

quently it was tested in an FPGA-based controller. To make easy the comparison of the proposed

architecture with other more standard control techniques, a well-defined simulation set-up has been

followed. The simulation process consists of three main phases:

1. Learning: during the learning phase the robot is placed into a training environment. While

exploring, the system plastically changes the perception-action association on the basis of the

overall goal (i.e. defined through the RF).

2. Test in the same environment as in the learning phase: the learning mechanisms are stopped

and the robot performances are evaluated.
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3. Test in an unknown environment: the robot is placed into a series of new environments, differ-

ent from the learning ones, to show the generality of the learned behaviours.

During the learning phase a growing set of emerged cycles, arisen in response to different envi-

ronmental states, are associated to suitable actions through the MM algorithm. In order to evaluate

the robot performances in a quantitative way, the following parameters have been considered:

• Pnew: cumulative number of new perceptual states that emerge during learning;

• Bumps: cumulative number of collisions with obstacles;

• Explored Area: new area covered (i.e. exploration capability);

• Retrieved Targets: number of targets retrieved in the environment.

Initially each new pattern is associated with a random action, but the continuous emerging of such

a pattern leads the action selection network to tune its weights in order to optimize the association

between the perceptual state and the action to be performed. It is also desirable that new patterns

occur only during the first learning steps (i.e. epochs). To guarantee the convergence of the algorithm,

the learning process cannot be considered ended while new patterns continue to emerge with a high

frequency. Moreover in order to solve the robot navigation problem, it is necessary that a pattern

occurs several times, since the robot learns by trial and error.

Since the termasq gives an information about the stability of the action associated with the pattern

q, this was used to evaluate the convergence of the learning process. The LRU algorithm (that

manages the pattern table) was modified to consider theasq. The patternq can not be replaced if its

asq is under a fixed threshold (ASLearn) that is determined during the design phase.

The code that identifies an emerged cycle is constituted by the four parametersxq, yq, x̄q and

ȳq that take on continuous values because they depend on the evolution of the state variables of the

controlled system.

The choice of the tolerance to distinguish among different patterns is a crucial problem during the

design phase. If the tolerance increases, the number of patterns representing the robot’s perception of
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the environment decreases. Then, the learning time is reduced but the perception-action association

is more rough. On the contrary, if the tolerance is reduced the number of actions increases, producing

a wider range of different solutions for the navigation task. In this way it is feasible to reach a better

but more time consuming solution.

Table 1 shows the value of the most relevant parameters used during the learning phase. In the RF,

the contact sensors are dominant with respect to the distance and target ones since it was considered

more important to preserve the robot safety. For the same reason the weights of the frontal distance

sensors in the reward function are higher than lateral sensors ones.

Table 1: Relevant simulation parameters of the MM-like structure.

RF parameters Learning parameters

ki for frontal distance sensors15 as start value 0.6

ki for lateral distance sensors10 as decrement factory 0.01

ki for contact sensors 20 ASLearn 0.5

hD,hA 10 Tolerance 8%

3.1 Simulation Environment

To test the performance and the potential impact of the proposed architecture we developed a software

tool for mobile robot simulations [29]. The framework has been designed to evaluate and compare

the performance of different control strategies applied to the navigation of autonomous roving robots.

The tool permits to create a 3D environment in which the exploring capabilities of a robot executing
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Figure 3: Interface of the 3D simulator used to compare robot navigation control algorithms: frame

(I) is the menu that permits to set the robot and the environment characteristics, frame (II) permits

to choose the simulation parameters, frame (III) represents the behavior of the WCC system and the

active reference cycle, frame (IV) and (V) show a 3D and 2D view of the environment and the robot.

a navigation task such as a food retrieval task, can be evaluated. The behavior of the system is

monitored with the help of a real-time visualization tool that gives a complete idea of the system

evolution in terms ofinternal representationand corresponding robot actions (see Fig. 3).

An example of the robot behaviour guided by the internal patterns generated through the WCC

technique is shown in Fig.4. Movies of this simulation are available on the web [30].

The modular structure of the simulator allows to easily integrate new blocks as the action se-

lection module. The simulated environment, where the robot is placed, is made-up of obstacles,

walls and targets. When the robot finds a target, this one is disabled until another target is found.

This mechanism allows the robot to visit different targets exploring the whole environment. A tar-

get is represented by a point surrounded by a circle that indicates its visibility range. Obstacles are

represented by walls and by rectangular objects distributed in the environment.

The simulated robot has a cubic shape and the dimension of each edge is 1 robot unit (ru). The
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Figure 4: Example of a trajectory followed by the simulated robot and the corresponding mental

patterns that emerge depending on the robot embodiment and situatedness.
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(a) (b)

Figure 5: (a) Map of the sensors equipped on the robot. (b) Reference cycles linked to the robot

sensors. Due to the common nature of contact and distance sensors, if they are placed in the same

position on the robot (e.g. C3 and D3), an unique reference cycle is used. The target is considered

as an obstacle located in a symmetrical position with respect to the motion direction. The target

sensor is omnidirectional and for this reason it is associated to four reference cycles distributed in

the corners of the scroll grid.

sensory system equipped on the robot consists of four distance sensors, three contact sensors and one

target sensor. The detecting distance is set to2.5 ru for the frontal distance sensors,2.0 ru for the

lateral sensors. The target sensor is able to detect the distance and the orientation between the robot

and the detected target only when the robot reaches the influence area associated to each target.

Distance sensors are associated with the reference cycles that reflect the topological position. A

similar strategy has been adopted for the target. When a target is within the range of robot visibility,

it is considered as an obstacle located in a position symmetric with respect to the motion direction.

The aiming action is guided by a reference cycle with a low gain, so that obstacle avoidance is a

priority over reaching a target.

Fig. 5 shows the link between sensors and reference signals. Sensors with the same position on

the robot are associated with reference cycles with the same position in the phase plane.



20

The four parameters (xq, yq, x̄q andȳq) used to characterize the perceptual state (i.e. cycle) that

emerges in the controlled chaotic system representing our perceptual system, are associated to a

robot behaviour through the MM-like structure that constitutes the action selection layer. The action

selection network consists of one hundred entries and two output weights are associated to each input.

Each entry is constituted by the set of the four parameters above, which describe an emerged cycle.

So, when a cycle emerges in the perceptual system, on the basis of its identification parameters, is

associated to an empty slot or to a previously emerged pattern. The maximum number of non-empty

entries was fixed to100.

4 Simulation results and comparisons

In order to test the capabilities of the proposed architecture, the learning phase has been done in two

environments with different characteristics. The first, calledE1, is shown in Fig. 6 (a). It consists of

two rooms, with a target in a room and two obstacles in the other one. In order to guarantee an easy

passage through the rooms another target is placed in the communication door between them. The

second environment, calledE2, contains a series of obstacles, alternated with several targets (see Fig.

6 (b)).

For each environment a set of five learning trials was performed with the MM structure randomly

initialized. The learning phase is stopped at 65000 actions (i.e. epochs). Each robot simulation step

(i.e. epoch) corresponds to a single robot action: this is determined simulating the dynamical system

for 2000 steps with an integration step equal to 0.1. These parameters guarantee the convergence of

the multiscroll system to a stable attractor when external stimuli are perceived by the robot.

During the learning phase, a sequence of new patterns emerges and the robot learns how to behave

in the current situation. To evaluate the convergence of the learning phase, in Fig. 7 the trends of

the cumulative number of new patterns that arise (Pnew) is shown for both the environments. The

learning process leads to a huge improvement of the robot behaviour for the situation (i.e. perceptual

state) that more often occurs, while some other patterns can be not suitably learned if they seldom

emerge.
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(a) (b)

Figure 6: 3D view of the environments used during the learning phase:E1 (a) andE2 (b). Black

boxes are obstacles, the circles represent the target detection area. The dimensions ofE1 are20x20

ru2 whereasE2 dimensions are36x36 ru2.
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Figure 7: Cumulative number of new patterns that emerge during the learning phase calculated in

windows of 5000 epochs for the environmentsE1 (a) andE2 (b). The bars indicate the minimum and

maximum value whereas the solid line is the mean value of the set of five simulations performed.
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After the first5000learning epoches, the number of new emerging patterns is very low and tends

to reach a stable value. These results were obtained adopting the learning parameters defined in

Tab. 1. In particular the total number of patterns that emerges, around70, is directly related to the

tolerance parameter that has been set to8%. In other simulations carried out, increasing the tolerance

factor to15%, the number of emerged patterns was reduced to around30.

A reduced number of emerged patterns leads to speed up the learning phase, but decreases the

specialization of the robot actions with a consequent lowering of the performances.

To evaluate the efficacy of the learning phase, an important parameter isas. The value ofas is

directly related to the stability of the association among the perceptual state and the robot action.

Fig. 8 shows the evolution of the learning parameteras in the two environments (i.e.E1 andE2).

In Fig. 8 (a) and (b) the trend for a single simulation and for each pattern is shown. The duration

of the learning phase, set to 65000 epoches, guarantees a sufficient stability and reliability for the

perception-action association. In fact the total number of patterns emerged is about70and more than

60%of the patterns have anas < 0.5: this corresponds to more than100updates of the associated

action following the indication of the reward function, and about the25% of the patterns have an

as < 0.1 that correspond to more than500updates.

In Fig. 8 (c) and (d) the average value for the whole simulation campaign for each environment

is given.

The learning process guided by the Reward Function significatively improves the robot capabil-

ities evaluated in terms of number of bumps and target retrieved. In Fig. 9 and 10, the cumulative

number of bumps and targets found is shown for the two learning environments, comparing the be-

haviour of the system during learning with the same architecture when the learning is not activated.

The results show that since the first stage of the learning (i.e. about 5000 epoches), a significant

difference in term of performance is evident. The robot behaviour is completely different as shown

in Fig. 11 where the trajectories followed by the robot with and without learning can be compared.

The comparison between the performance with and without learning outlines the capability of

the control system to create a suitable link among perception and action.

To further outline the results of the testing phase for a learned architecture, information on the
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Figure 8: An example of the evolution of all theas during the learning phase in the environmentsE1

(a) andE2 (b). In (c) and (d) the average value ofas among five simulations, calculated in windows

of 5000 epochs for the two environments is shown. The bar indicates the minimum and maximum

value for each window.
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Figure 9: Cumulative value of bumps calculated in windows of 500 epochs in the conditions of

learning and no-learning for the environmentsE1 (a) andE2 (b). The two trends span among the

minimum and maximum value for each window.
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Figure 10: Cumulative value of retrieved targets calculated in windows of 500 epochs in the condi-

tions of learning and no-learning for the environmentsE1 (a) andE2 (b). The two trends span among

the minimum and maximum value for each window.
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(a) (b)

(c) (d)

Figure 11: Trajectories followed by the robot during a test in the learning environments. (a) and (b)

behaviour of the robot without learning; (b) and (d) trajectories followed after the learning phase.

The simulation time is 10000 epochs.
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Figure 12: (a) Creation of anAction Map. Each vector indicates the phase action associated with the

emerged patterns indicated only with their position in the phase plane. (b) Sequence of perceptual

patterns and associated actions generated by the control architecture.

association between perceptual patterns and corresponding actions is reported. In particular, in Fig.

12, the final emerged actions associated to the mostly used patterns are shown. This result is related to

a learning carried out in the environmentE1. Fig. 12 (a) shows the x-y phase plane of the multiscroll

system together with the internal patterns emerged during a learning phase. For sake of clarity, each

class is reported only with a marker indicating its position (i.e. parametersxq andyq). The vector

associated to each pattern, shows module and phase of the corresponding action performed by the

robot, with respect to the x-axis that indicates frontal direction of the robot motion. In Fig. 12 (b), a

typical target approaching manoeuvre made by the robot is shown. The sequence of internal patterns

and the corresponding actions, used to avoid the collision with an obstacle and to find a target, are

depicted.

A main issue in neural network learning is to ensure that the network, during the learning phase,

is able to extract a “motion rule” from the patterns which are used as a concise environment repre-

sentation. Since the environment conditions reflect situations where the robot locally interact with

targets and/or obstacles, the capability to learn a motion rule can be generalized to new environments.

So we will refer to this “generalization capability” shown in the following section.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13: Trajectories followed by the robot controlled through: (a) (b) local Potential Field; (c)(d)

WCC with forward exploration strategy; (e)(f) WCC with chaotic exploration behaviour; (g)(h) WCC

with action selection layer based on a MM structure.

4.1 Comparisons with other navigation strategies

To further evaluate the performances of the control architecture, we tested the learned structure in

new environments making a comparison with other navigation strategies. In particular, a basic ver-

sion of the traditional method of the quadratic Potential Field (PF) has been considered. Also in

this case the robot can use only local information, acquired from its sensory system to react to the

environment conditions (i.e. local Potential Field) [31, 32]. For the comparison, two other control

schemes based on the WCC technique have been taken into account. For these algorithms we adopt

a different action system based on a deterministic action selection procedure [29, 5]. The difference

between the two versions is limited to the behaviour of the robot during the exploration phase (i.e.

when no stimuli are perceived). The former implements a very simple behaviour that consists into a

forward movement with the speed set to its maximum value (i.e.WCCf ), whereas the latter consid-
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ers the chaotic evolution of the multiscroll system to determine the action of the robot exploring the

environment (i.e.WCCc).

The parameters of all the algorithms taken into consideration (e.g. robot speed, constraints for

the movements) have been chosen in order to allow a comparison among them.

To compare the results obtained with the reward-driven learning enclosed in the MM-structure

with the other control scheme, a learned structure with average performances was chosen. To com-

pare the navigation capabilities to explore the environment avoiding obstacles and retrieving the

target found, two different scenarios were considered. The former (i.e.E3) is a well structured en-

vironment consisting of four rooms with a target placed in each room; the latter (i.e.E4) is a more

complex environment filled with randomly placed obstacles and targets. The dimensions of both the

environments are40x40ru2.

A typical trajectory followed by the robot in each case is shown in Fig. 13. The figure qualita-

tively shows the robot behaviour for the four considered algorithms. For each simulation the robot is

randomly placed in the environment and the three control methods are applied monitoring the robot

behaviour for 10000 actions.

In the case of the proposed architecture with the MM-based action selection layer and the chaotic

exploration movements (WCCMMc), the parameters used for both the environmentsE3 andE4, have

been obtained with a learning phase carried out in the environmentE1. This to demonstrate that

the knowledge acquired by the system during learning can be used also in different environmental

situations. Movies of these simulations are available on the web [30].

To compare the performances of the algorithms we consider as performance indexes, the cumu-

lative number of targets found and the area explored by the robot [19].

The performance obtained with theWCCMMc architecture in terms of explored area, are compa-

rable with the best results obtained with the other navigation schemes as shown in Fig. 14.

It is important to notice that comparing the results betweenWCCf andWCCc, in terms of ex-

plored area, the effect of chaos during the exploration phase is positive and allows to obtain the best

performance.

Furthermore as far as the cumulative number of detected targets is concerned, the results are
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Figure 14: Value of the explored area obtained using three different control algorithms in two en-

vironments: a four-rooms environment (E3) (a) and a less structured one (E4)(b). The arena which

dimension is 50x50 robot units, has been divided into locations of 2x2 robot units. The simulation

time is 10000 epochs and the mean value of area explored, mediated over 5 simulations, calculated

with time windows of 1000 epochs, is indicated. The bars show the minimum and maximum ex-

plored area.
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Figure 15: Cumulative number of targets found with the considered control algorithms inE3 (a) and

in a E4 (b). The simulation time is 10000 epochs and the mean number of targets, mediated over 5

simulations, calculated with time windows of 1000 epochs, is indicated. The bars show the minimum

and maximum number of targets.

excellent for the environmentE4 (see Fig. 15 (b)). Instead the simulations performed inE3 indicate

a retrieving problem as illustrated in Fig. 15 (a) in which the performances of theWCCMMc are

not impressive. A justification can be found in the particular distribution of the targets inE3 that

are confined in four well distinct rooms. In this condition an approach like the PF or theWCCf

is more indicated because they adopt forward actions during the exploration phase. Nevertheless

the performances of theWCCMMc can be improved if a learning session is performed in the testing

environment. In fact, as shown in Fig. 16, theWCCMMc agent, after learning on the environment

E3, improves its target retrieving capabilities with respect to the previous one (i.e. learning inE1).

This final result shows that the proposed architecture can generalize the learned motion rules and the

performance can be improved extending the learning to the specific environment dealing with.
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Figure 16: Comparison between the cumulative number of targets found in the environmentE3 by

an agent that performed a learning phase inE1 and another that creates its perception-action map

directly inE3. The simulation time is 10000 epochs and the mean number of targets, mediated over 5

simulations, calculated with time windows of 1000 epochs, is indicated. The bars show the minimum

and maximum number of targets found.

5 FPGA-based implementation

The choices done during the design of the control architecture were oriented to the implementation

of the strategy in a high performing hardware, embedded on a roving robot. In the following some

preliminary results on an experimental platform are reported.

To realize the WCC approach for navigation control in hardware, an FPGA-based board was

considered. The control algorithm was implemented on the Nios II, a 32-bit RISC digital soft-

processor, using also customized VHDL (Very High Speed Integrated Circuits Hardware Description

Language) blocks for the most time consuming tasks [33].

The roving robotRover IIused for the experiments is a classic four wheeled drive rover controlled

through a differential drive system. Rover II is equipped with four infrared distance sensors, with low

level target sensors (i.e. able to detect black spots on the ground used as targets) and with a board for

sonorous target detection inspired by phonotaxis in crickets. A scheme of the hardware framework

is shown in Fig. 17.



32

Figure 17: Description of the framework used during the experiments. An FPGA-based board

equipped on a roving robot.

In the following experiments, to fulfill a food retrieval task, distance sensors were used for ob-

stacle avoidance, whereas a cricket-inspired hearing board was considered for the target detection

issues.

The simulation and control of the multiscroll system is performed directly in a VHDL entity, im-

plementing a fourth order Runge-Kutta algorithm (RK4). On the other side, the NiosII microproces-

sor is devoted to handle the sensory system, to execute the Action Selection layer and to supervise the

activities of the VHDL entities implementing the Weak Chaos Control. When the simulation ends,

the NiosII reads the parameters that identify the emerged cycle. Then it calculates the command to

drive the roving robot. The simulation process implemented in the VHDL entity lasts about 4.2 ms

(the time is referred to the generation of 2000 samples with an integration step of 0.1) and the control

algorithm running on NiosII about 80 ms.

The environment used to perform tests and comparisons, is a10x10ru2 room with three obstacles

and two targets. The simulated arena and the real arena are shown in Fig. 18 where the trajectories

followed by the robot after the learning process are shown and compared with the trajectories shown

by a simulated robot working in a virtual environment mimicking the real one.



33

(a) (b)

(c) (d)

Figure 18: Environment used during the learning phase in real experiments (a) compared with simu-

lations (b). The dimensions of the environment are10x10 ru2. Trajectories followed during a test in

the learning environments by the real robot (c) and the simulated one (d).
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6 Remarks

Among the very few attempts to use dynamical systems in robot perception the Dual Dynamics (DD)

scheme is worth of interest [34]. The key idea is that a robotic agent can work in different modes,

which lead to qualitatively different behavioral patterns. Mathematically, transitions between modes

can be considered as bifurcations in the control system. One of the key aspects of the DD scheme is

that the overall behavior of the agent is the result of a concurrent and weighted activation of different

behaviors, each one modeled by a dynamical system. All the behaviors are active at the same time.

In this way the approach tries to formulate in an alternative way the very well known behavior based

robotics methodology.

Our approach, as outlined above, is completely different. In fact only one behavior, at the end of

the learning phase, is active. Moreover, we fully exploit the richness shown by chaotic wanderings,

by controlling the chaotic system in a “weak mode”. In fact, in this way, even slightly different

sensory information can lead to a different emerged cycle. The “meaning” of this cycle is gained

through a very simple associative layer that can therefore be implemented in hardware at low cost

and with real time performance.

An application of chaos theory to control robotic systems is included in Kuniyoshi’s works, in

which Coupled Map Lattice (CML), exploited for their rich dynamical properties [35], are used

in experiments with a baby model [21]. Coupled chaotic system such as CML can change their

behaviour to reflect external information via coupling with the environment, and can explore the

multiple dynamics embedded, and get temporarily entrapped in them.

In this work, we adopt an extremely simple dynamical system, that can be designed and developed

in a modular way to facilitate the scalability of the architecture. Moreover the chosen model can be

implemented in both in analog [2] and in digital [5] hardware to be embedded in a really working

robot prototype.

The learning algorithm used to attain a suitable association between the emerged cycle character-

istics and a successful action is drawn from the reinforcement learning theory [36], by implementing

the simplest version that leads to good results being also suitable for a reliable hardware implemen-
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tation, due to its simplicity.

Another important consideration is that the WCC technique here discussed is based on a state

feedback approach and the control gains are here chosen in order to grant the controlled system

stability under stimulation with reference signals (see [5] for details). The termWeak Chaos Control

refers to a strategy that does not aim to the exact matching between the reference and the controlled

signal; instead the chaotic signal has to collapse to an orbit near the reference signal. At this point,

the amplitude value of the control gains is related to the matching degree between the reference and

the controlled signal. The control gain value could be therefore used as an additional choice to weight

a kind of “degree of attention” that the learning system could pay to the corresponding sensor signal.

If learning is used also to choose the control gains, at the end of the learning phase the robot could be

allowed to discard useless sensor signals and to “pay attention” to the important ones. This approach

is currently under active investigation.

Another advantage given by the chaotic nature of the perceptual core is evident when the robot

is trapped in a deadlock situation. In this situation standard solutions proposed in literature consider

either the introduction of a higher layer dedicated to deal with the local minima or to add noise to

escape from the deadlock. In our case the robot entrapped in a difficult situation, without succeeding

in reaching the assigned target for a long time can decrease its level of attention to sensory inputs

(e.g. reducing the assigned control gain, this effect is similar to “boredom” in living beings) allowing

the chaotic dynamics to reemerge. The result is to increase the exploration movements to avoid the

local minima.

Moreover, the strategy introduced in the paper was applied to the apparently simple task of au-

tonomous navigation learning. The clear advantages over the classical approaches, for example

related to the potential field, are that the control structure, based on the multiscroll system, is quite

general. The fact that the results obtained are comparable with those of the Potential Field is relevant.

This means that a general approach to learn the sensing-perception-action cycle using the power of

information embedding typical of chaotic systems, applied to a traditional task, succeeds in reaching

the same results as a technique peculiarly designed to solve that task. The WCC-MM approach can

in fact be applied to learn an arbitraryaction-map, or in general abehaviour map. In particular we
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exploit the rich information embedding capability of a chaotic system with a simple learning that

gives a “meaning” to the embedded information (taking inspiration from [8]), within the context of

the robot action. This contextualization is decided through the Reward Function. The definition of

this function has to be designed a priori, based on the task to be accomplished. According to the best

of the authors’ knowledge, it is the first time that the chaotic circuits and system theory, linked to a

simple neural learning, is used to approach problems relevant in robot perception, even in the simple

case of navigation. In fact, here navigation is treated as a perceptual task. Several other examples are

currently under investigation to further generalize the approach and a considerable theoretical effort

is being paid nowadays to include the strategy here introduced within a more general scheme for

robot perception in unknown conditions and environments.

7 Conclusion

In this paper a new perception-action system has been proposed to deal with robot navigation prob-

lems in unknown environments. The Weak Chaos Control technique permits to synthesize the per-

ception schema in a compact form easy to be processed. The introduced action layer allows to

generate new behaviours through a very simple unsupervised learning driven by a reward function.

The architecture has been tested in different simulated environments showing the increase in terms

of robot capabilities obtained during the learning phase.

The simulation results confirmed that the proposed solution is suitable to resolve the obstacles

avoidance and target retrieving tasks and the performance indexes adopted have been compared with

other navigation strategies showing that a learned structure can be used in different kinds of environ-

ments and that reactivating the learning mechanisms improves the performance. Finally the designed

and assessed architecture is suitable for a hardware implementation based on FPGA. The perceptual

core and the learning mechanism were implemented in hardware and embedded on a roving robot

for a real-time learning of the navigation tasks defined through the Reward Function.

Further developments will include the introduction in the real robot of other kinds of sensors

needed to improve the capabilities to explore and draw more details from the environment for per-
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ceptual purposes.
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